
Mono on F&S
Boards

Version 0.2
(2023-07-26)

© F&S Elektronik Systeme GmbH
Untere Waldplätze 23

D-70569 Stuttgart
Germany

Phone: +49(0)711-123722-0
Fax: +49(0)711-123722-99

About This Document
This document describes how to run .NET framework applications via Mono on F&S Boards.

Remark
The version number on the title page of this document is the version of the document. It is
not related to the version number of any software release! The latest version of this
document can always be found at http://www.fs-net.de.

How To Print This Document
This document is designed to be printed double-sided (front and back) on A4 paper. If you
want to read it with a PDF reader program, you should use a two-page layout where the title
page is an extra single page. The settings are correct if the page numbers are at the outside
of the pages, even pages on the left and odd pages on the right side. If it is reversed, then
the title page is handled wrongly and is part of the first double-page instead of a single page.

Typographical Conventions
We use different fonts and highlighting to emphasize the context of special terms:
File names

Menu entries

Board input/output

Program code

PC input/output

Listings

Generic input/output

Variables

8 9

Titlepage

http://www.fs-net.de/

Mono on F&S Boards v

History
Date V Platform A,M,R Chapter Description Au
2020-05-18 0.1 ALL A ALL Initial version PG
2020-06-09 0.2 ALL M ALL Correct typos and footer PG
2020-06-09 0.2 ALL A 2 Add System requirements chapter PG
2020-06-09 0.2 ALL M 8 Add GTK# tutorial directly into this document PG

V Version
A,M,R Added, Modified, Removed
Au Author

Mono on F&S Boards vi

Mono on F&S Boards vii

Table of Contents
1 Introduction 1
2 System requirements 2
3 Tested Software versions 3
4 Compiling the Mono images 4

4.1 Compiling the Mono images with Buildroot ...4
4.2 Compiling the Mono images with Yocto ..5

5 Executing .NET applications on F&S boards using Mono 6
5.1 Running an application ..6
5.2 Handling possible failures..6
5.2.1 Missing entry in the DllMap ...6
5.2.2 Missing .so library..7
5.2.3 Missing .dll library ..8

6 Using Visual Studios to remote debug Mono apps on F&S
Boards 9
6.1 Installing MonoRemoteDebugger ..9
6.2 Using MonoRemoteDebugger ...9
6.3 Known issues ..10

7 Executing Xamarin applications on F&S boards using Mono 11
8 Appendix 12

8.1 Add GTK# to Xamarin projects..12

9 Important Notice 20

Introduction

Mono on F&S Boards 1

1 Introduction

This document describes how to run .Net framework application to F&S-Linux boards, using
the Mono framework.

Mono is an open source implementation of the .Net framework, sponsored by Microsoft. It
currently supports most of the .NET libraries up to version 4.7 except WPF, WWF, and
with limited WCF and limited ASP.NET async stack. For detailed compatibility information
please see the official website of the mono project.

https://www.mono-project.com/docs/about-mono/compatibility/

https://www.mono-project.com/docs/getting-started/application-portability/

Please notice, that there are no native libraries to access Linux hardware peripheries like I2C
or SPI in Mono. If you need to access these in your application, please contact F&S for
support to create these libraries.

This document assumes basic knowledge of using Linux on F&S boards. For a detailed
introduction please see the Linux on F&S Boards.pdf from the document section of your F&S
board at

https://www.fs-net.de/

https://www.mono-project.com/docs/getting-started/application-portability/
https://www.fs-net.de/

System requirements

Mono on F&S Boards 2

2 System requirements

The mono rootfs images need a lot of disk space, so make sure your flash memory is big
enough:
Buildroot

Image type Image size
Ubifs Image (Nand Flash) 210 MB

Ext4 Image (eMMC) 480 MB

Yocto
Image type Image size

Ubifs Image (Nand Flash) 210 MB

Ext4 Image (eMMC) 520 MB

Tested Software versions

Mono on F&S Boards 3

3 Tested Software versions
The Software used in this document has been tested with the following versions.

Software Version
Development Machine F_S_Development_Machine-

Fedora_27_V1.2

Buildroot
 fsimx6 fsimx6-B2020.04
Yocto
 fsimx6
 fsimx8mm

fsimx6-Y2020.03
fsimx8mm-Y2020.05

Microsoft Visual Studio Community 2019 Version 16.5.4
MonoRemoteDebugger 1.5.2

Compiling the Mono images

Mono on F&S Boards 4

4 Compiling the Mono images
F&S supports the build environments Buildroot and Yocto to build the system software.
This chapter describes how to build a root filesystem with preinstalled Mono binaries, using
Buildroot or Yocto.
For a detailed description how to setup and use the build environments, please see the
document Linux on F&S Boards chapter Compiling the System Software.

Please note that Buildroot currently only supports Mono for fsimx6/7-Boards. For
fsimx8m/mm-Boards use Yocto.

4.1 Compiling the Mono images with Buildroot
1. Get the latest F&S-Buildroot release and execute the setup-buildroot script to

install Buildroot to your development machine. Follow the instructions.
2. Build the standard defconfig of your machine. Run

make fs<YOUR_MACHINE>_std_defconfig
in your Buildroot main directory.

3. Open the configuration menu in your buildroot directory
make menuconfig

4. Activate the mono package at
Target packages -> Interpreter languages and scripting-> mono
if you are using a GUI also activate libgdiplus
Target packages -> Libraries -> Graphics -> libgdiplus

5. Mono needs about 170MB of disk space, so the rootfile system may get too large
for .ext image. You can increase the .ext image size by setting
Filesystem images -> ext2/3/4 root filesystem -> exact size
in the configuration menu to at least 400000

6. Build buildroot
make –j4

7. The build output can be found at
output/images/

Compiling the Mono images

Mono on F&S Boards 5

4.2 Compiling the Mono images with Yocto
1. Get the latest F&S- Yocto release and execute the setup-yocto script to install

Yocto to your development machine. Follow the instructions.
2. Setup the build environment for your machine.

Fsimx8 boards need a different DISTRO than fsimx6/7 boards, so please run the
respective command in the main directory of your Yocto installation.
Fsimx6/7
DISTRO=fus-imx-x11 MACHINE=<YOUR_MACHINE> . fus-setup-
release.sh
Fsimx8
DISTRO=fus-imx-xwayland MACHINE=<YOUR_MACHINE> . fus-setup-
release.sh

3. Now run
bitbake fus-image-mono

to compile the images.
4. The build output can be found at

tmp/deploy/images/<YOUR_MACHINE>/

Executing .NET applications on F&S boards using Mono

Mono on F&S Boards 6

5 Executing .NET applications on F&S
boards using Mono

This chapter describes how to execute .NET applications on F&S boards and how to handle
possible failures.

5.1 Running an application
1. Install the Mono images to your board. You will need to install kernel, device tree and

root filesystem. The different ways of how to install the images are described in the
document Linux on F&S Boards chapters Image Download and Image Storage.

2. Boot Linux and transfer your .NET application to the board. You can transfer it via
network using the tftp command or use an USB stick. See Linux on F&S Boards
chapter Using the Standard System and Devices.

3. Execute the .NET application using
mono </path/to/your/application.exe>

5.2 Handling possible failures
Depending on your application you may get error messages for missing libraries, e.g.:

System.DllNotFoundException: libcairo-2.dll

This might have several reasons.

5.2.1 Missing entry in the DllMap

Mono uses DllMaps to map Windows library names (.dll) to Linux library names (.so).
The DllMaps are specified either in the global mono configuration file at
/etc/mono/config

Or at the assembly configuration file of your application at
<App_Name>.exe.config

A DllMaps entry looks like this:
<configuration>
…
 <dllmap dll="<DLL_NAME>" target="<SO_NAME>" os="<OS>"/>
…
</configuration>

Executing .NET applications on F&S boards using Mono

Mono on F&S Boards 7

with
 DLL_NAME = Name of the .dll needed by the application
 SO_NAME = Name of the .so library, the dll is mapped to. Mono checks the paths

/lib/ and /usr/lib/ for <SO_NAME>.
 OS = Name of the operating system for which the mapping should be applied (e.g.

linux, windows, osx...)

To check for a missing entry in the DllMap open the config file and look for the DLL_NAME
vi /etc/mono/config

If there is no exact entry for the missing .dll you can try to add one. First make sure your
rootfs is mounted read-writeable
mount –o remount,rw /

Then open the config again and add a new entry, for example:
<dllmap dll="libcairo-2.dll " target="libcairo.so.2" os="linux"/>

To get the name of the respective Linux library you can search the paths /lib/ and /usr/lib.
find /lib /usr/lib -name "libcairo*"

5.2.2 Missing .so library

Sometimes the DllMap entry is just slightly different from the name of the installed library
(for example libcairo.so.2.0 instead of libcairo.so.2). Just add a new entry with the correct
names to the config file.

If you cannot find a fitting .so-library for your needed .dll, you may have to install it first to
your root filesystem. How to do this depends on your build environment.

Buildroot
1. Open the configuration menu

make menuconfig
2. Type “/” to search for a package. If you find it, activate it, save and exit.
3. Rebuild your root filesystem. Some packages may have dependencies that cause the

build to fail, so you may have to build from scratch.
make clean
make –j4

Yocto
1. Go to the sources/ directory in the main directory of your Yocto installation.
2. Search for your package name using the find command

find –name “your_package_name*”
3. If you find it, add the following line to

conf/local.conf

Executing .NET applications on F&S boards using Mono

Mono on F&S Boards 8

of your Yocto build directory:
CORE_IMAGE_EXTRA_INSTALL += "<your_package_name>"

4. Rebuild your root filesystem.
bitbake fus-image-mono

If you cannot find any packages for your missing library, please contact F&S.

5.2.3 Missing .dll library

Some .dll libraries are just shipped with the .NET application. Make sure you copied all
necessary files to the board.

Using Visual Studios to remote debug Mono apps on F&S Boards

Mono on F&S Boards 9

6 Using Visual Studios to remote debug
Mono apps on F&S Boards

You can use Visual Studios to program and compile your .NET applications as usual, but if
you want to debug your application while running on the F&S board, some additional
preparations are needed.
The most comfortable way is to use the Visual Studios community extension
MonoRemoteDebugger. It consists of a client that has to be installed as Visual Studios
extension, and a server, which has to be run on the F&S board. The MonoRemoteDebugger
enables the transfer of the application to the board via SSH and basic debugging, like
stepping through the program code and read out some variables.

6.1 Installing MonoRemoteDebugger
Visual Studios

1. Click Extensions -> Manage Extensions and search for “MonoRemoteDebugger”.
2. Install it.

F&S Board
1. Download the latest Release of MonoRemoteDebugger.Server.zip from

https://github.com/techl/MonoRemoteDebugger/releases
2. Transfer it to the F&S board via tftp or UBS stick
3. On the board, unpack it to the /tmp/ directory using

unzip MonoRemoteDebugger.Server.zip -d /tmp/

Remark: In future releases the MonoRemoteDebugger.Server will be installed by Buildroot
and Yocto.

6.2 Using MonoRemoteDebugger
F&S Board

1. Activate the network. If your board is in a network with a DHCP server you can get an
IP address by running
udhcpc
If not, you can a activate the network by running
ifconfig eth0 up <IPADDR>
Note the boards IP address

2. Run the MonoRemoteDebugger.Server
mono /tmp/MonoRemoteDebugger.Server.exe

https://github.com/techl/MonoRemoteDebugger/releases/download/v1.5.2/MonoRemoteDebugger.Server.zip
https://github.com/techl/MonoRemoteDebugger/releases

Using Visual Studios to remote debug Mono apps on F&S Boards

Mono on F&S Boards 10

Visual Studios
1. Click Extensions -> MonoRemoteDebugger -> Debug with Mono (remote)
2. Enter the boards IP address into the field Remote-IP
3. Depending on your Application size you may have to increase the Timeout value
4. Click the Connect button. The application will be transferred to your board and the

Visual Studios debugger will stop at the first breakpoint

6.3 Known issues
Missing DllMaps
Sometimes the RemoteDebugger does not find DllMaps even though they are listed in
/etc/mono/config.
You can add these DllMaps to the app.config file of your Visual Studios Project.

Debug output is too large
The MonoRemoeDebugger transfers all output generated by Visual Studio the Board.
Sometimes .dll libraries get build that are already installed by mono as shared library. These
libraries can be pretty large and slow down the debugging process.
You can prevent Visual Studios from building unneeded libraries by expanding the
References entry of your Project in your Solution Explorer and right click on n reference.
Select Properties and set the entry Copy Locale to False.

Now the respective .dll will not be built with the project anymore.

Executing Xamarin applications on F&S boards using Mono

Mono on F&S Boards 11

7 Executing Xamarin applications on F&S
boards using Mono

Xamarin extents the .NET platform with tools and libraries to create cross-platform
applications. With the community driven Xamarin.Forms GTK Backend project, it is now
possible to run graphical Xamarin.Forms applications on Linux systems, using the Mono
GTK# backend.
A good tutorial on how to add the GTK# backend to Xamarin apps can be found at
https://docs.microsoft.com/de-de/xamarin/xamarin-forms/platform/other/gtk?tabs=windows
A PDF version of this website has also been attached to this document.

To run Xamarin.Forms on F&S- boards you need to add the gtk-sharp package to your
rootfile system.
This is currently only supported for the Yocto build environment. If you need to build with
Buildroot, please contact F&S.

Yocto
To add the gtk-sharp package to your rootfile system add
CORE_IMAGE_EXTRA_INSTALL += " gtk-sharp"
to conf/local.conf in your Yocto build directory.

https://docs.microsoft.com/de-de/xamarin/xamarin-forms/platform/other/gtk?tabs=windows

Appendix

Mono on F&S Boards 12

8 Appendix

8.1 Add GTK# to Xamarin projects
Source :
https://docs.microsoft.com/de-de/xamarin/xamarin-forms/platform/other/gtk?tabs=windows

https://docs.microsoft.com/de-de/xamarin/xamarin-forms/platform/other/gtk?tabs=windows

Appendix

Mono on F&S Boards 13

Appendix

Mono on F&S Boards 14

Appendix

Mono on F&S Boards 15

Appendix

Mono on F&S Boards 16

Appendix

Mono on F&S Boards 17

Appendix

Mono on F&S Boards 18

Appendix

Mono on F&S Boards 19

Important Notice

Mono on F&S Boards 20

9 Important Notice
The information in this publication has been carefully checked and is believed to be entirely
accurate at the time of publication. F&S Elektronik Systeme assumes no responsibility,
however, for possible errors or omissions, or for any consequences resulting from the use of
the information contained in this documentation.
F&S Elektronik Systeme reserves the right to make changes in its products or product
specifications or product documentation with the intent to improve function or design at any
time and without notice and is not required to update this documentation to reflect such
changes.
F&S Elektronik Systeme makes no warranty or guarantee regarding the suitability of its
products for any particular purpose, nor does F&S Elektronik Systeme assume any liability
arising out of the documentation or use of any product and specifically disclaims any and all
liability, including without limitation any consequential or incidental damages.
Products are not designed, intended, or authorized for use as components in systems
intended for applications intended to support or sustain life, or for any other application in
which the failure of the product from F&S Elektronik Systeme could create a situation where
personal injury or death may occur. Should the Buyer purchase or use a F&S Elektronik
Systeme product for any such unintended or unauthorised application, the Buyer shall
indemnify and hold F&S Elektronik Systeme and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, expenses, and
reasonable attorney fees arising out of, either directly or indirectly, any claim of personal
injury or death that may be associated with such unintended or unauthorized use, even if
such claim alleges that F&S Elektronik Systeme was negligent regarding the design or
manufacture of said product.

