
PicoCOM
Device Driver

Documentation

Version 1.9
(2013-03-28)

PicoCOM

Windows CE





About This Document
This documentation describes the configuration and basic usage of all device drivers avail
able for PicoCOM2, PicoCOM3, PicoCOM4 and PicoCOM5. Of course, we are targeting on 
keeping all modules of the PicoCOM family compatible, but because of different micropro
cessors, optimization fixes and customer suggestions, there might still remain some slight 
differences. Please keep this into account, when switching to a later PicoCOM board. Differ
ences of each PicoCOM module are pointed out accordingly in this documentation.

The following abbreviations of terms are used in this documentation:

PC2 - PicoCOM2

PC3 - PicoCOM3

PC4 - PicoCOM4

PC5 - PicoCOM5

The latest version of this document can be found at:

http://www.picocom.de 

Additional support information an software examples can be found in our discussion forum 
at:

http://forum.fs-net.de 

© 2013

F&S Elektronik Systeme GmbH
Untere Waldplätze 23

D-70569 Stuttgart
Germany

iii

http://www.picocom.de/
http://forum.fs-net.de/


iv



History

Date V Platform A,M,R Chapter Description Au

2011-01-19 0.1 PC4 A * First preliminary version of this documentation. MK

2011-05-26 0.2 PC4 M 2.1, 2.2 Digital-IO Table extended (HW restrictions).
Default display modes specified.

MK

2011-06-07 0.3 PC4 M 2.1 Column for pin direction added in Digital-IO table. MK

2011-07-01 0.4 PC4 M 2.2 Msignal description MK

2011-12-12 1.0 * A,M,R * Merged all PicoCOM device driver documentations MK

2012-01-12 1.0 * A,M * Some corrections and modifications. IO-Table for PicoCOM5 
added.

MK

2012-01-16 1.1 * M 2.2 Display mode table corrected. MK

2012-01-19 1.2 PC4 A 2.2 Mode 7 added for PicoCOM4. MK

2012-01-24 1.2 * * * Overall corrections and modifications JG

2012-04-18 1.3 PC3,PC4 A 2.11 Capacitive touch driver documented. MR

2012-06-21 1.4 PC4 M 2.1 IO-Table for PicoCOM4 updated (PCS0) MK

2012-07-12 1.5 * A 2.4 SSHD server description RK

2012-09-24 1,6 PC3, PC4 A, M 2.10 CDPin Description added MR

2012-10-26 1.7 PC3, PC4 M 2.10 IO-Table compatibility for serial3 updated MK

2013-03-11 1.8 PC4 A 2.1 SoftIRQ functionality documented. MK

2013-03-28 1.9 PC4 M 2.1 SoftIRQRate unity is us instead of ms MK

V Version

A,M,R Added, Modified, Removed

Au Author

v



Table of Contents
1 Windows CE Stream Interface Driver 1

1.1 Common registry settings for Steam Interface Drivers.......................................2
1.2 Example of use..................................................................................................3

2 Device Driver 4
2.1 Driver for Digital I/O...........................................................................................4
2.1.1 IO-Pins...............................................................................................................6
2.1.2 Configuration example.....................................................................................11
2.1.3 Programming example.....................................................................................11
2.1.4 Troubleshooting...............................................................................................14
2.2 LCD-Display Driver...........................................................................................15
2.2.1 LCD power on sequences................................................................................21
2.3 Driver for Serial I/O (UART).............................................................................24
2.4 Audio Driver.....................................................................................................25
2.4.1 Volume controls...............................................................................................26
2.5 Ethernet Driver.................................................................................................27
2.6 I²C Device Driver..............................................................................................29
2.7 SPI Device Driver.............................................................................................29
2.8 CAN Device Driver...........................................................................................29
2.9 Analogue Input Driver......................................................................................30
2.9.1 Programming example.....................................................................................30
2.10 SD/MMC Card Driver.......................................................................................32
2.11 Touchpanel Driver............................................................................................34
2.11.1 Capacitive touch interface................................................................................36
MXT224 Touch Driver....................................................................................................37
EDT Touch Driver...........................................................................................................38

3 Modules and Utilities 39
3.1 NDCUCFG utility..............................................................................................39
3.2 Module NETUI..................................................................................................41
3.3 Core SSH support............................................................................................42
3.4 Extending the search path...............................................................................44

4 Appendix 45
Listings..........................................................................................................................45
List of Figures................................................................................................................45
List of Tables..................................................................................................................45
Important Notice............................................................................................................46

vi



vii





Windows CE Stream Interface Driver

1 Windows CE Stream Interface Driver
Most Windows CE device drivers are implemented as Stream Interface Driver. Thus you can 
access these drivers via File System and the respective File API (CreateFile(), Write
File(), ReadFile(), SetFilePointer(), DeviceIoControl()).

A Stream Interface Driver receives commands from the Device Manager and from applica
tions by means of file system calls. The driver encapsulates all of the information that is ne
cessary to translate those commands into appropriate actions on the devices it controls. All 
stream interface drivers,  whether  they manage built-in  devices  or  installable  devices,  or 
whether they are loaded at boot time or loaded dynamically, have similar interactions with 
other system components. The following illustrations shows the interactions between system 
components for a generic stream interface driver, that manages a built-in device.

  
Figure 1: Windows CE Stream interface driver architecture.  

All Stream Interface Drivers are loaded by the WindowsCE Device Manager during start-up. 
This mechanism can be controlled by registry settings under [HKLM\Drivers\Builtin]. 
These settings offer the possibility to define the load order and to disable several drivers in
dependently.

1 



Windows CE Stream Interface Driver

1.1 Common registry settings for Steam Interface Drivers

Table 1 shows a list of registry settings that are common for all drivers being loaded by 
the Device Manager.

Key Type Comment

Dll String Name of the DLL with the Driver

Order DWORD This value specifies the load order for the driver. If two drivers 
have the same load order value, the drivers load in the order they 
occur in the registry.
A value of 0 authorises the device manager to load the driver in 
any order.
Default: 0

Prefix String This required value specifies the driver’s device file name prefix. 
It is a three-character identifier, such as COM.

Index DWORD This required value specifies the device index, a value from 0 
through 9.

Ioctl DWORD Call post-initialisation function.
You should not modify this value.

Flags DWORD Load flags for the Device Manager.
Possible values:
0 = Default value if no flags are set.

1 = Tells the device manager to unload the driver after loading it 
and calling <XXX>_Init().

2  =  Causes  the  driver  to  be  loaded  with  a  call  to 
LoadLibrary() instead of LoadDriver()

4 = Allows you to have the registry settings loaded, but not the 
driver. You can use this to keep the driver from loading until you 
call  ActivateDeviceEx() you can set this flag, but you must 
clear it before calling ActivateDeviceEx().

8 = Use this flag if you want to leave the prefix off of the driver 
functions.

Default: 0

Friendly
Name

String Friendly name of the driver.

2



Windows CE Stream Interface Driver

Key Type Comment

IClass String Defines an interface class for the driver.
Do not modify this value. 

Table 1: Default stream driver regsitry settings.

1.2 Example of use

The device name to be used when accessing a driver, is composed by registry values Pre
fix and Index. 

// Prefix = TST
// Index  = 2
Handle hTst = CreateFile(_T("TST2:"), GENERIC_WRITE, 0, NULL, 

   OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
Listing 1: Accessing Device Drivers within an application.

For debugging issues or when desiring to use some interface pins for different purposes, it is 
often required to disable a device driver. To disable a driver from being loaded, registry value 
Flags must be set to 4:

[HKLM\Drivers\Builtin\<DriverName>]
″Flags″=dword:4

Listing 2: Disabling a device driver via registry.

3 



Device Driver

2 Device Driver

2.1 Driver for Digital I/O

PicoCOM features up to 49 programmable I/O lines. By default, no I/O line is configured by 
the Digital I/O driver (DIO). To control or access a pin with the DIO driver, it is required to  
adapt the configuration values in registry:

[HKLM\Drivers\BuiltIn\DIGITALIO]

Description of registry values:

Key Type Default value Comment

Port DWORD 0 This value defines the default port being 
used after opening the DIO driver.
0,1,2,3,4 or 5

UseAsIO Hex 00,00,00, 
00,00,00

1 = The corresponding pin is used as gen
eral purpose I/O. One bit for each I/O pin.

DataDir Hex 00,00,00, 
00,00,00

Data Direction.

0 = The corresponding pin is an input.
1 = The corresponding pin is an output.

One bit for each I/O pin.

DataInit Hex 00,00,00, 
00,00,00

Default value of the output pin after driver 
initialization.

SoftIRQPrior
ity256

DWORD 100 Priority of the polling thread used to handle 
software IRQ pins.

SoftIRQRate DWORD 10000 Polling rate to check pin state of software 
IRQ pions (in us).

IRQCFG0 Hex 00,00,00, 
00,00,00

Interrupt configuration 0

0 = The corresponding pin is not configured 
to signal a raising edge.

1 = The corresponding pin is configured to 
signal a raising edge.

IRQCFG1 Hex 00,00,00, 
00,00,00

Interrupt configuration 1

0 = The corresponding pin is not configured 
to signal a falling edge.

1 = The corresponding pin is configured to 

4



Device Driver

signal a falling edge.

Table 2: Digital I/O registry settings.

Most I/O lines of the PicoCOM have multiple functions. Using a pin for the Digital I/O inter
face requires that all other corresponding functions are disabled. If I/O line 4 (pin 17) should 
be well configured and accessible by the DIO interface driver for example, the serial device 
driver for COM2 must be deactivated. Tables 4,5,6 and 7 will give you an overview of all I/O 
lines and their functions.

IRQCFG0 IRQCFG1 Function

0 0 Interrupt disabled 

0 1 Falling edge enabled

1 0 Raising edge enabled

1 1 Raising and falling edge 
enabled

Table 3: Digital I/O interrupt configuration values.

Note: 

On prior  platforms  I/O  pins  were  configured  in  registry  using  32-bit  DWORD values 
(UseAsIOA, UseAsIOB, …). This method is still working on PicoCOM for compatibility pur
poses, but not explained in more detail at this point.

Note: 

The SoftwareIRQ functionality enables possibility to use IRQ on all IO-Pins. This function
ality is currently only available on PicoCOM4 (Kernel Version ≥ V1.12).

5 



Device Driver

2.1.1 IO-Pins

The tables available on the following sites show all  pins, that can be configured and ac
cessed by DIO driver interface. PicoCOM2 was the first board within the PicoCOM family, 
hence all later modules where designed to be as compatible to PicoCOM2 as possible. Pins 
that do not fully comply this compatibility, are marked with a green label to highlight the dif
ferences compared to PicoCOM2.

Additionally, please attend to marked hardware pin restrictions:

(1) Serial resistor (100k)

(2) Internal Pull-Up (10k)

(3) Pins may drive active signals during boot-up

(4) Since HW revision 1.2

(5) Software-IRQ only (refer to chapter 2.1)

Note:

Detailed information regarding particular IO-Pins can also be found in  respective Pico
COM hardware documentation.

Note:

Please also note that  not all IO-Pins feature the same capabilities. In contrary to Pico
COM2, on most other modules the interrupt capability is only available on a few pins. 
Please refer to column capabilities for details.

6



Device Driver

7 

Table 4: Digital IO pins - PicoCOM2

Funktion

Port COM I2C SPI1 USB LCD sonst.

0 0

P
o

rt
 0

0 13 TxD2 I/O/IRQ
1 1 1 14 RxD2 I/O/IRQ
2 2 2 15 RTS2 I/O/IRQ
3 3 3 16 CTS2 I/O/IRQ
4 4 4 17 TxD1 I/O/IRQ
5 5 5 18 RxD1 I/O/IRQ
6 6 6 23  CNX I/O/IRQ
7 7 7 24 PWR I/O/IRQ
8 0

P
o

rt
 1

0 26 MISO I 3 (3)
9 1 1 27 MOSI O 4 (3)
10 2 2 28 SPCK O 5 (3)
11 3 3 29 PCS0 I/O/IRQ 6 (3)
12 4 4 32 SDA I/O/IRQ 9
13 5 5 33 SCL I/O/IRQ 10
14 6 6 34 DAT0 I/O/IRQ (3)
15 7 7 35 DAT1 I/O/IRQ (3)
16 0

P
o

rt
 2

0 36 DAT2 I/O/IRQ (3)
17 1 1 37 DAT3 I/O/IRQ (3)
18 2 2 38 CLK I/O/IRQ (3)
19 3 3 39 CMD I/O/IRQ (3)
20 4 4 40 IRQ0 I/O/IRQ 11
21 5 5 41 PWM3 I/O/IRQ 12
22 6 6 43 LCD0 I/O/IRQ
23 7 7 44 LCD1 I/O/IRQ
24 0

P
o

rt
 3

0 45 LCD2 I/O/IRQ
25 1 1 46 LCD3 I/O/IRQ
26 2 2 47 LCD4 I/O/IRQ
27 3 3 48 LCD5 I/O/IRQ
28 4 4 49 LCD6 I/O/IRQ
29 5 5 50 LCD7 I/O/IRQ
30 6 6 51  TxD3 LCD8 I/O/IRQ
31 7 7 52  RxD3 LCD9 I/O/IRQ
32 0

P
o

rt
 4

0 53 PCS1 LCD10 I/O/IRQ
33 1 1 54 PCS2 LCD11 I/O/IRQ
34 2 2 55 CTS1 LCD12 I/O/IRQ
35 3 3 56 LCD13 AD0 I/O/IRQ
36 4 4 57 LCD14 AD1 I/O/IRQ
37 5 5 58 LCD15 AD2 I/O/IRQ
38 6 6 59 LCDCLK I/O/IRQ
39 7 7 60 LCDDEN I/O/IRQ
40 0

P
o

rt
 5

0

H
ex

-b
yt

e5

63 HSYNC I/O/IRQ
41 1 1 64 VSYNC I/O/IRQ
42 2 2 65 LCDCC I/O/IRQ
43 3 3 66 LCDPOW I/O/IRQ (3)
44 4 4 67 CFLPOW I/O/IRQ (3)
45 5 5 68 LCDENA I/O/IRQ (3)
46 6 6 69 RTS1 I/O/IRQ 13
47 7 7

48 0

P
o

rt
 6

8

49 1 9

50 2 1
0

51 3 1
1

52 4 1
2

53 5 1
3

54 6 1
4

55 7 1
5

Digital-IO
PC2-
Pin

ca
p

ab
ili

ti
e

s

SKIT-
Pin 

(J10)IO-Pin
Registry 
settings

SD/ 
MMC

H
ex

-b
yt

e 
0

U
s

e
A

s
IO

 / 
D

a
ta

D
ir

 / 
D

a
ta

In
it

 / 
IR

Q
C

fg
0

 / 
IR

Q
C

fg
1

H
ex

-b
yt

e 
1

H
ex

-b
yt

e 
2

H
ex

-b
yt

e 
3

H
ex

-b
yt

e 
4

H
ex

-b
yt

e 
6



Device Driver

8

Table 5: Digital IO pins - PicoCOM4

Port COM I2C USB LCD

0 0

P
o

rt
 0

0 13 TXD2 (5)
1 1 1 14 RXD2 (5)
2 2 2 15 (4,5)
3 3 3 16 (5)
4 4 4 17 TXD1 (5)
5 5 5 18 RXD1 (5)
6 6 6 23 OTGVBUS EINT4 (1,4)
7 7 7 24 PWR EINT8 I/O/IRQ
8 0

P
o

rt
 1

8 26 MISO0 3
9 1 9 27 MOSI0 O 4
10 2 10 28 SPCK0 O 5
11 3 11 29 PCS0 EINT1 I/O/IRQ 6 (4)
12 4 12 32 SDA 9
13 5 13 33 SCL 10
14 6 14 34 DAT0 (2)
15 7 15 35 DAT1 (2)
16 0

P
o

rt
 2

16 36 DAT2 (2)
17 1 17 37 DAT3 (2)
18 2 18 38 CLK
19 3 19 39 CMD (2)
20 4 20 40 EINT2 I/O/IRQ 11
21 5 21 41 PWM 12
22 6 22 43 R0
23 7 23 44 R1
24 0

P
o

rt
 3

24 45 R2
25 1 25 46 R3
26 2 26 47 R4
27 3 27 48 G0
28 4 28 49 G1
29 5 29 50 G2
30 6 30 51 TXD3 G3
31 7 31 52 RXD3 G4
32 0

P
o

rt
 4

32 53 PCS1 G5
33 1 33 54 PCS2 B0
34 2 34 55 CTS1 B1
35 3 35 56 B2 AIN0
36 4 36 57 B3 AIN1
37 5 37 58 B4 AIN2
38 6 38 59 VCLK
39 7 39 60 VM
40 0

P
o

rt
 5

40 63 VLINE
41 1 41 64 VFRAME
42 2 42 65 VEEK
43 3 43 66 VLCD-ON
44 4 44 67 VCFL-ON
45 5 45 68 VCD-DEN
46 6 46 69 RTS1 13
47 7 47 11 CTS1 SHDN 1
48 0

P
o

rt
 6

48 12 EINT0 I/O/IRQ 2
49 1 49

50 2 50

51 3 51

52 4 52

53 5 53

54 6 54

55 7 55

Digital-IO

PC4-
Pin

Function

ca
p

a
b

il
it

ie
s

SKIT-
Pin 
(J10)IO-Pin

Registry 
settings

SPI1 
+CAN

SD/ 
MMC

other

U
se

A
sI

O
 /

 D
a

ta
D

ir
 /

 D
a

ta
In

it
 /

 I
R

Q
C

fg
0 

/ 
IR

Q
C

fg
1

I/O/IRQ(5)

I/O/IRQ(5)

RTS2/TXD3(4) I/O/IRQ(5)

CTS2/RXD3(4) I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(4)

I/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)

I/O/IRQ(5)



Device Driver

9 

Table 6: Digital IO pins - PicoCOM3

Funktion

Port COM I2C SPI1 USB LCD sonst.

0 0

P
o

rt
 0

0 13 TxD0 I/O
1 1 1 14 RXD0 I/O
2 2 2 15 RTS0/TXD2 I/O
3 3 3 16 CTS0/RXD2 I/O
4 4 4 17 TXD1 I/O
5 5 5 18 RXD1 I/O
6 6 6 23 OTGVBUS -
7 7 7 24 PWR I/O
8 0

P
o

rt
 1

8 26 MISO0 I/O 3
9 1 9 27 MOSI0 I/O 4
10 2 1

0 28 SPCK0 I/O 5
11 3 1

1 29 PCS0 I/O 6
12 4 1

2 32 SDA I/O 9
13 5 1

3 33 SCL I/O 10
14 6 1

4 34 DAT0 I/O
15 7 1

5 35 DAT1 I/O (2)
16 0

P
o

rt
 2

1
6 36 DAT2 I/O (2)

17 1 1
7 37 DAT3 I/O (2)

18 2 1
8 38 CLK I/O (2)

19 3 1
9 39 CMD I/O (2)

20 4 2
0 40 EINT2 I/O/IRQ 11 (2)

21 5 2
1 41 PWM I/O/IRQ 12

22 6 2
2 43 VD19 I/O

23 7 2
3 44 VD20 I/O

24 0

P
o

rt
 3

2
4 45 VD21 I/O

25 1 2
5 46 VD22 I/O

26 2 2
6 47 VD23 I/O

27 3 2
7 48 VD10 I/O

28 4 2
8 49 VD11 I/O

29 5 2
9 50 VD12 I/O

30 6 3
0 51 TXD2 VD13 I/O

31 7 3
1 52 RXD2 VD14 I/O

32 0

P
o

rt
 4

3
2 53 PCS1 VD15 I/O

33 1 3
3 54 PCS2 VD3 I/O

34 2 3
4 55 CTS1 VD4 I/O

35 3 3
5 56 VD5 AIN0 I/O

36 4 3
6 57 VD6 AIN1 I/O

37 5 3
7 58 VD7 AIN2 I/O

38 6 3
8 59 VCLK I/O

39 7 3
9 60 VM I/O

40 0

P
o

rt
 5

4
0 63 VLINE I/O

41 1 4
1 64 VFRAME I/O

42 2 4
2 65 VEEK I/O

43 3 4
3 66 VLCD-ON I/O

44 4 4
4 67 VCFL-ON I/O

45 5 4
5 68 VCD-DEN I/O

46 6 4
6 69 RTS1 I/O 13

47 7 4
7 11 CTS1 SHDN I/O 1

48 0

P
o

rt
 6

4
8 12 SD-CD EINT0 I/O/IRQ 2

49 1 4
9

50 2 5
0

51 3 5
1

52 4 5
2

53 5 5
3

46 6 5
4

47 7 5
5

Digital-IO
PC3-
Pin

ca
p

a
b

il
it

ie
s

SKIT-
Pin 

(J10)IO-Pin
Registry 
settings

SD/ 
MMC

U
se

A
sI

O
 / 

D
at

aD
ir

 / 
D

at
aI

n
it

 / 
IR

Q
C

fg
0 

/ I
R

Q
C

fg
1



Device Driver

10

Table 7: Digital IO pins - PicoCOM5

Port COM I2C USB LCD

0 0

P
o

rt
 0

0 13 TXD2 I/O
1 1 1 14 RXD2 I/O
2 2 2 15 RTS2/TXD3 I/O
3 3 3 16 CTS2/RXD3 I/O
4 4 4 17 TXD1 I/O
5 5 5 18 RXD1 I/O
6 6 6 23 OTGVBUS - (1)
7 7 7 24 PWR EINT4 I/O/IRQ
8 0

P
o

rt
 1

8 26 MISO0 I/O 3
9 1 9 27 MOSI0 I/O 4
10 2 10 28 SPCK0 I/O 5
11 3 11 29 PCS0 I/O 6
12 4 12 32 SDA I/O 9
13 5 13 33 SCL I/O 10
14 6 14 34 DAT0 I/O (2)
15 7 15 35 DAT1 I/O (2)
16 0

P
o

rt
 2

16 36 DAT2 I/O (2)
17 1 17 37 DAT3 I/O (2)
18 2 18 38 CLK I/O
19 3 19 39 CMD I/O (2)
20 4 20 40 EINT2 I/O/IRQ 11
21 5 21 41 PWM/EINT3I/O/IRQ 12
22 6 22 43 R1 I/O
23 7 23 44 R2 I/O
24 0

P
o

rt
 3

24 45 R3 I/O
25 1 25 46 R4 I/O
26 2 26 47 R5 I/O
27 3 27 48 G0 I/O
28 4 28 49 G1 I/O
29 5 29 50 G2 I/O
30 6 30 51 TXD3 G3 I/O
31 7 31 52 RXD3 G4 I/O
32 0

P
o

rt
 4

32 53 PCS1 G5 I/O
33 1 33 54 PCS2 B1 I/O
34 2 34 55 CTS1 B2 I/O
35 3 35 56 B3 AIN0 I/O
36 4 36 57 B4 AIN1 I/O
37 5 37 58 B5 AIN2 I/O
38 6 38 59 VCLK I/O
39 7 39 60 VM I/O
40 0

P
o

rt
 5

40 63 I/O
41 1 41 64 I/O
42 2 42 65 VEEK I/O
43 3 43 66 VLCD-ON I/O
44 4 44 67 VCFL-ON I/O
45 5 45 68 VCD-DEN I/O
46 6 46 69 RTS1 I/O 13
47 7 47 11 CTS1 EINT1 I/O/IRQ 1
48 0

P
o

rt
 6

48 12 EINT0 I/O/IRQ 2
49 1 49

50 2 50

51 3 51

52 4 52

53 5 53

46 6 54

47 7 55

Digital-IO
PC5-
Pin

Function

ca
p

a
b

il
it

ie
s

SKIT-
Pin 

(J10)IO-Pin
Registry 
settings

SPI1 
+CAN

SD/ 
MMC

other

U
se

A
sI

O
 /

 D
a

ta
D

ir
 /

 D
a

ta
In

it
 /

 I
R

Q
C

fg
0 

/ 
IR

Q
C

fg
1

B0/HSync
R0/VSync



Device Driver

2.1.2 Configuration example

As an example, the registry configuration values to use IO-Pin 12 (PicoCOM Pin 32) as Input 
with a rising edge interrupt trigger, are as follows:

IO-Pin 12 responds to Bit 4 at Port 1. The configuration byte for Port 1 equates the second 
hex byte of the configuration values. To authorize the DIO driver to enable the pin configura
tion for IO-Pin 12, the UseAsIO must be 00,10,00,00,00,00 .

To configure this pin for Input usage, the corresponding bit in the DataDir value must be 
cleared.  The  DataInit value  does  not  affect  the  input  configuration.
The combination of the IRQCFG0 and IRQCFG1 value must be 1, 0. Hence the following ta
bles shows the resulting configuration values.

Registry Key Value

UseAsIO 00,10,00,00,00,00

DataDir 00,00,00,00,00,00

DataInit 00,00,00,00,00,00

IRQCFG0 00,10,00,00,00,00

IRQCFG0 00,00,00,00,00,00

Table 8: Registry configuration example for using IO-Pin 12 as Input pin.

As IO-Pin 12 is multiplexed with the I²C interface, the I²C driver must be disabled in registry 
to make sure that the DIO driver can access this pin correctly. This is done by setting the 

Flags value  in  the  I²C  driver  registry  key  ([HKLM\Drivers\Builtin\NI2C])  to  4 (→ 
chapter 1).

2.1.3 Programming example

Use registry entries IRQcfg0 and IRQCfg1 to adjust the interrupt functionality of a port pin. 
You must set UseAsIO[n] to 1 and DataDir[n] to 0 (Input) to enable the interrupt config
uration.

To use an interrupt within an application, the DIO driver implements some IO-controls. The 
first control function that should be called is IOCTL_DIO_REQUEST_IRQ. 

This will enable the interrupt at system level and you may wait for the configured interrupt 
event with the blocking IO-control  IOCTL_DIO_WAIT_IRQ. A timeout value of how long to 
wait for the event must be defined, which could be INVINITE if desired. 

11 



Device Driver

As soon as the event is triggered or the timeout has expired, the  DeviceIOControl() 
function will return and all  actions, which are required to handle the interrupt, can be ar
ranged. 

For  this  reason,  the  interrupt  will  be  disabled  and  has  to  be  enabled  again  with  the 
IOCTL_DIO_IRQ_DONE.

To unregister the interrupt, control code IOCTL_DIO_RELEASE_IRQ must be used. Please 
note that an interrupt has to be released before it can be reused and initialized again. 

Example

#include <windows.h>
#include <dio_sdk.h>

/* Main program */
int _tmain(int argc, _TCHAR* argv[])
{

/* -- 1.) Open one digital port -- */
HANDLE hDIO;
hDIO = CreateFile(_T("DIO1:"), GENERIC_WRITE, 0, NULL, 

 OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

if (INVALID_HANDLE_VALUE == hDIO)
{

RETAILMSG(1, (L"CreateFile() failed (LE:%d)\r\n", 
 GetLastEror()));

return(FALSE);
}

/* -- 2.) Write data to the port -- */
unsigned char data = 0xAA;
DWORD dwBytesWrite = 1;
WriteFile(hDIO, &data, dwBytesWrite, &dwBytesWrite, NULL);
if (1 != dwBytesWrite)
{

/* TODO: Error handling */
}

/* -- 3.) Change port -- */
LONG lDistance = 1;
if (!SetFilePointer(hDIO, lDistance, NULL, FILE_BEGIN))
{

RETAILMSG(1, (L"SetFilePointer() failed (LE:%d)\r\n",
       GetLastError()));

}

/* -- 4.) Handle interrupt on port J5 pin 2 -- */
BOOL bSuccess;
DWORD dwIRQ, dwWaitState;
WAITIRQ cIRQStat;
dwIRQ = 12;  /* PicoCOM4: IO-Pin12 - Pin32 - J10->Pin9 */
/* Request interrupt */

12



Device Driver

if (!DeviceIoControl(hDIO, IOCTL_DIO_REQUEST_IRQ, &dwIRQ,
                     sizeof(DWORD), NULL, 0, NULL, NULL))
{

RETAILMSG(1,(L"Initializing interrupt failed (LE:
   %d)\n\r", GetLastError()));

return (FALSE);
}
while (TRUE)
{

/* Wait for interrupt (event)*/
cIRQStat.dwTimeOut = 5000; /* maximum waittime: 5s */
cIRQStat.dwIOPin = dwIRQ;
bSuccess = DeviceIoControl(hDIO, IOCTL_DIO_WAIT_IRQ,         

&cIRQStat, sizeof(cIRQStat),
     &dwWaitState,

sizeof(dwWaitState), 
NULL, NULL) ;

if (!bSuccess)
{

RETAILMSG(1, (L"IOCTL_DIO_WAIT_IRQ failed”));
break;

}
else if (WAIT_OBJECT_0 == dwWaitState)
{

RETAILMSG(1, (L"Interrpt occured!\r\n")) ;
/* Acknowledge interrupt */
bSuccess = DeviceIoControl(hDIO,

                                           IOCTL_DIO_INTDONE_IRQ,
     &dwIRQ, sizeof(DWORD), 

NULL, 0, NULL, NULL);
}
else
{

RETAILMSG(1, (L"Timeout!\r\n"));
}

}

/* Release IRQ */
bSuccess = DeviceIoControl(hDIO, IOCTL_DIO_RELEASE_IRQ, &dwIRQ,

 sizeof(DWORD), NULL, 0, NULL,
                                 NULL ) ;

if (!bSuccess)
{

RETAILMSG(1, (L"IOCTL_DIO_RELEASE_IRQ failed!\r\n", 
          GetLastError()));

}

/* -- 5.) Close DIO driver -- */
CloseHandle(hDIO);

} /* main() */
Listing 3: Digital I/O programming example

13 



Device Driver

2.1.4 Troubleshooting

1. Setting a non-working IO-Pin value:
Please make sure that the UseAsIO and the DataDir registry values are set correctly. 
Meaning of each hex byte is:
UseAsIO <Port0>, <Port1>, …, <Port5>, <Port6>
Additionally, please make sure that the alternative function driver is disabled, as this leads 
to malfunction.

2. DIO driver reports different pin states when reading an input pin continuously.
Please make sure that this pin has a certain level of using pull-up or pull-down resistors. 
Also verify that no external device is connected to this pin, that might influence its level.

14



Device Driver

2.2 LCD-Display Driver

PicoCOM features a very flexible and powerful interface for LCD displays. The driver is fully 
configurable via WindowsCE registry.

The registry key for the PicoCOM driver is:

[HKLM\Drivers\Display\LCD]

Use the following parameters to configure the driver:

Key Value Default 
value

Meaning

Mode DWORD PC2/4: 2
PC3:   0

Number of the predefined configuration or new user 
configuration.

UseBootMem DWORD 0 Use memory provided by bootloader for frame buf
fer

Verbose DWORD 0 Enables additional output at serial debug port.

PWMDevice String “” Name of the PWM device being used for contrast 
control.
Note: This device is always used if this key is 
defined in registry. The VEEK-Pin is no longer con
trolled by the display driver.

PWMFreq DWORD 0 Base-frequency for external PWM device.

Table 9: Basic display settings in registry.

With parameter Mode you have the possibility to use one of the fixed configurations stored in 
the kernel, or to define a new configuration in registry. Values between 0 and 99 are re
served for fixed configurations. For your own configuration you have to use values between 
100 and 199.

The following configurations are predefined in the kernel:

Module Mode Display X´Y

PicoCOM2 0 Kyocera KCS3224 320x240

1 Sharp LM8V31 640x480

2 (default) Hitachi TX09 240x320

3 Sharp LQ057Q3DC02 320x240

4 Sharp LQ038Q5DR 320x240

15 



Device Driver

Module Mode Display X´Y

5 Toshiba LTM04C280K 640x480

6 Sharp LQ104V1DG11 640x480

PicoCOM4

0 EDT ET035080  – 16Bpp, QVGA 320x240

1 EDT ET070080 – 16Bpp, WVGA 800x480

2 (default) Hitachi TX09 – 16Bpp, QVGA 240x320

3 EDT ET043080 – 16Bpp 480x272

4 NEC NL6448BC – 16Bpp, VGA 640x480

5 Sharp LQ104 – 16Bpp, VGA 640x480

6 AOU G104SN03 – 16Bpp, VGA (LVDS) 640x480

7 EDT ET057090DH – 16Bpp, VGA 640x480

PicoCOM3

0 (default) EDT ET070080 – 16Bpp, WVGA 800x480

1 EDT ET035080 – 16Bpp, QVGA 320x240

2 Hitachi TX09 – 16Bpp, QVGA 240x320

3 NEC NL6448BC – 16Bpp, VGA 640x480

4 Sharp LQ104 – 16Bpp, VGA 640x480

5 AOU G104SN03 – 16Bpp, VGA (LVDS) 640x480

6 AOU G104SN02 – 16Bpp, SVGA (LVDS) 800x600

7 Hitachi TX18D35 – 16Bpp, WVGA 800x480

Table 10: Predefined display modes.

16



Device Driver

For configurations with a mode higher than 99, you have to create a new sub-key with the 
Name  Mode<n>.  Within this sub-key you can use the following parameters to adjust the 
driver:

[HKLM\Drivers\Display\LCD\Mode<n>]

Key Type Meaning

Name String Name of the driver as a text string. Only for information 
purposes.

Type DWORD s. Table 12 - Display type settings.

Config DWORD s. Table 13 - Display config settings.

Columns DWORD Amount of visible pixels in X-direction.

PPL DWORD Amount of clocks in X-direction before the HSYNC sig
nal.

This value is optional and normally the same number 
as Columns.

BLW DWORD
1-256

Beginning-of-line-wait:
Value (1-256) specifies the number of pixel clock peri
ods to add to the beginning of a line transmission be
fore the first set of pixels is sent to the display.

HSW DWORD
1-64 (PC2)
1-256(o.)

Horizontal-sync-pulse-width:
Value (1-256) specifies the number of pixel clock peri
ods to pulse the line clock at the end of each line.

Note:
On PicoCOM2 the range of this value is restricted to 
1-64 instead to 1-256.

ELW DWORD
1-256

End-of-line-wait:
Value (1-256) specifies the number of pixel clock peri
ods to add to the end of a line transmission, before the 
line clock is asserted.

Rows DWORD Amount of visible pixels in Y-direction.

LPP DWORD Line per panel:
This is an optional parameter and in most cases it is 
the same number as Rows.

BFW DWORD
1-256

Beginning-of-frame wait:
In TFT mode, value (1–256) specifies the number of 
line clock periods to add to the beginning of a frame, 
before the first set of pixels is sent to the display. The 

17 



Device Driver

Key Type Meaning

Line clock does toggle during the insertion of the extra 
line clock periods.

BFW must be cleared to zero (disabled) in passive 
mode.

VSW DWORD
1-256

Vertical sync pulse width:
In TFT mode, value (1–256) specifies the number of 
line clock periods to pulse the FRP pin at the end of 
each frame, after the end-of-frame wait (EFW) period 
elapses. Frame clock is used as VSYNC signal in act
ive mode. The line clock does toggle during VSYNC. 

Note:
On PicoCOM2, the range of this value is restricted to 
1-64 instead to 1-256.

In passive mode, the value (1–64) specifies the num
ber of extra line clock periods to insert after the end-of-
frame. The time for which FRP is asserted, is not af
fected by VSW in passive mode. The line clock does 
toggle during the insertion of the extra line clock peri
ods.

EFW DWORD
1-256

End-of-frame line clock wait count:
In TFT mode, value (1–256) specifies the number of 
line clock periods to add to the end of each frame. The 
Line clock does toggle during the insertion of the extra 
line clock periods.

EFW must be cleared to zero (disabled) in passive 
mode.

Width DWORD Physical width of the display

Height DWORD Physical height of the display

Bpp DWORD Bits per Pixel.

The number of bits that represents one pixel in display 
memory.

ContrastEnable DWORD Switch on/off contrast voltage generation.

ContrastValue DWORD Initial value for contrast voltage.

LCDClk DWORD LCD pixel clock in Hz or MHz

Rotate DWORD Rotate Display (values: 0…4)

18



Device Driver

Key Type Meaning

EnableCursor DWORD 1: show cursor on screen.

MSignal DWORD 0: low
1: high
2: toggle (default)

PONCflPow DWORD Delay in ms to activate backlight (/CFL_POW signal).
Default: 80

PONLcdPow DWORD Delay in ms to power on display current (/VLCD).
Default: 0

PONLcdEna DWORD Delay in ms to activate /LCD_ENA signal.
Default: 40

PONLcdBufEna DWORD Delay in ms to activate LCD buffers (/LCD_BUFENA 
signal). 
Note: Not available on PicoCOM. For more information 
please refer to the Starter-Kit schematic and the hard
ware documentation of the particular PicoCOM mod
ule.
Default: 60

PONVeeOn DWORD Delay in ms to activate contrast voltage (VEE signal).
Default: 70

Table 11: Display settings in registry.

Table Register  Type:

Value Meaning

0x000 Default

0x001 Dual Scan Display

0x002 TFT-Display

0x004 Color-Display

0x008 Monochrome 8Bit Display

0x010 - 0x080 Reserved (do not modify these bits)

0x100 Enable contrast voltage (VEE) (same as EnableContrast)

Table 12: Display type settings.

19 



Device Driver

Table Register Config:

Symbolic Name Value Meaning

LCD_DP 0x08000000 Data polarity: active low

LCD_VSP 0x00100000 Vertical sync polarity: active low

LCD_HSP 0x00200000 Horizontal sync polarity: active low

LCD_OEP 0x00800000 Output enable polarity: active low

LCD_CLKP 0x00400000 Clock polarity: active low

LCD_USE_PON_MODE1 0x00010000 or 0 LCD power on sequence 1 (default)

LCD_USE_PON_MODE2 0x00020000 LCD power on sequence 2

LCD_USE_PON_MODE3 0x00040000 LCD power on sequence 3

LCD_USE_PON_MODE4 0x00080000 LCD power on sequence 4

LCD_USE_PON_CUSTOM 0x000F0000 Custom LCD power on sequence that 
can be defined via PON variables in ap
propriate LCD mode (PONLcdPow,…). 
See Table 11.

Table 13: Display config settings.

20



Device Driver

2.2.1 LCD power on sequences

21 

Figure 4: LCD power sequencing diagramm - Mode1.

Mode1

<5ms 1ms 5ms

LCD_POW

LCD_BUFENA

LCD_EN

CFL_POW

VEEK/LCDCC

Figure 3: LCD power sequencing diagramm - Mode2.

Mode2

5ms <5ms 100ms

LCD_POW

LCD_BUFENA

LCD_EN

CFL_POW

VEEK/LCDCC

Figure 2: LCD power sequencing diagramm - Mode1.

Mode1

<5ms 1ms 5ms

LCD_POW

LCD_BUFENA

LCD_EN

CFL_POW

VEEK/LCDCC



Device Driver

22

Figure 5: LCD power sequencing diagramm - Mode3.

Mode3

<5ms 1ms 60ms

LCD_POW

LCD_BUFENA

LCD_EN

CFL_POW

VEEK/LCDCC

Figure 6: LCD power sequencing diagramm - Mode4.

Mode4

5ms 6ms <5ms 200ms

LCD_POW

LCD_BUFENA

LCD_EN

CFL_POW

VEEK/LCDCC



Device Driver

Note: 

Figure  7 shows the default configuration, but any sequence of signal activation is pos
sible. The smallest delay setting, usually 0, defines the starting point of the power-on se
quencing.

Note:

Unlike other modules, /LCD_BUFENA on PicoCOM is no dedicated signal. It is derived 
from /LCD_ENA. For more information please refer to the Starter-Kit schematic and the 
hardware documentation of your particular PicoCOM module.

Note:

There is a huge online database available containing suitable settings for a lot of displays. 
These configuration files (NDCUCFG batch files) can be downloaded from our website 
(http://www.picocom.de).

23 

Figure 7: LCD power sequencing diagramm - Custom mode.

LCD_POW

LCD_EN

LCD_BUFENA

VEEK/LCDCC

CFL_POW

Custom

PONLcdPow 
= 0ms

PONLcdEna

←      PONLcdBufEna        →
←                       PONVeeOn                     →
←                                     PONCflPow                               →

http://www.picocom.de/


Device Driver

2.3 Driver for Serial I/O (UART)

This driver is used to access serial interfaces COM1, COM2 and COM3.

The registry keys for the driver are:

[HKLM\Drivers\BuiltIn\SERIAL1]
[HKLM\Drivers\BuiltIn\SERIAL2]
[HKLM\Drivers\BuiltIn\SERIAL3]

Optional settings:

Key Type Default value Function

Priority256 DWORD 101 Priority for serial receive/transmit thread.

RS485 DWORD 0 Enable RS485 mode. This is only applicable 
for COM2. 

Table 14: Serial I/O registry settings.

RS485 Mode

On PicoCOM you can toggle COM2 between RS232 and RS485 mode. To do this, you have 
to  add  the  registry  value  RS485 and  set  it  to  1.  Additionally,  you  need  to  modify  the 
fRtsControl member of DCB structure to enable RTS toggle control.

DCB cDCB;
BOOL bSuccess;
HANDLE hCOM2;

/* Open COM port*/
hCOM2 = CreateFile(L"COM2", GENERIC_READ|GENERIC_WRITE, 0, NULL,
                  OPEN_EXISTING, 0, 0);

/* Some basic strucutre initializations */
cDCB.DCBlength = sizeof(DCB);
//... e.g. set baudrate ...

/* Enable RTS toggle which is requored for RS485 mode */
cDCB.fRtsControl = RTS_TOGGLE_CONTROL;

/* Apply DCB structure */
bSuccess = SetComState(hCOM2, &cDCB);
//...

Listing 4: Programming example how to set RTS toggle mode to enable RS485

24



Device Driver

Note: 

Please note that RS485 requires a different external wiring.

2.4 Audio Driver

The Audio driver for PicoCOM can be configured under the following registry key:

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio]

The mixer line settings are compatible across all Windows CE 6.0 based platforms.

Possible settings:

Key Value Type Default value Comment

Prefix String WAV This required value specifies the 
driver’s device file name prefix. It 
is a three-character identifier, such 
as COM.

DLL String wavedev.dll name of the driver file

Index DWORD:
0-9

0 This value specifies the device in
dex, a value from 0 through 9.

MasterOutMute DWORD:
0/1

0 Mute all audio output channels.

MasterOutVol DWORD:
0-0xFFFFFFFF

0xFFFFFFFF Main volume for all Output-chan
nels.

OutputRender
MonoOnly

DWORD:
0/1

0 If enabled, right channel output will 
be the same as left channel out
put.

EqPreset DWORD:
0-2

0 Specifies the equalizer pre-set 
0: Flat
1: Min
2: Max

TrebleBoost DWORD:
0 – 0xF

0 Volume to control treble boost.

BassBoost DWORD
0 – 0xFF

0 Bass boost volume

BypassMute DWORD
0/1

1 Mute Line-In bypass.

25 



Device Driver

Key Value Type Default value Comment

MasterInMute DWORD:
0/1 

1 Mute Line-In.

MasterInVol DWORD:
0-0xFFFFFFFF

0 Main volume for all Input-chan
nels.

LineInVol DWORD:
0-0xFFFFFFFF

0 Volume for Line-In channel.

Table 15: Audio driver registry settings.

2.4.1 Volume controls

Please note that all volume controls separate into a left channel and a right channel value.  
More precisely, this means that the lower half bits are used for the right channel and the up
per half bits are used for the left channel volume. In case of the Master output volume for ex
ample (MasterOutVol),  the lower 16 bits (mask  0x0000FFFF)  define the right channel 
volume and the higher 16 bits (mask: 0xFFFF0000) define the left channel volume.

FSMixer

Additionally, the audio-line can be configured by using the F&S Audio Mixer utility, available 
in the control panel. Any mixer changes automatically adapt the registry settings. To store 
the current configuration permanently, the registry must be saved.

26

Figure 8: FSMixer screenshot.



Device Driver

2.5 Ethernet Driver

The Ethernet-Interface on PicoCOM features a small set of additional configurations:

[HKEY_LOCAL_MACHINE\Comm\ETHNETA1\Parms]

Implemented on: PC3, PC4

Key Value Type Default Value Comment

LinkMode DWORD:
0-6

1 Enable/disable auto negotiation and 
select link speed .

1: AutoNegotiate 10/100
2: AutoNegotiate 10
3: 100 Full Duplex
4: 100 Half Duplex
5: 10 Full Duplex
6: 10 Half Duplex

PowerSavingLevel DWORD:
0-2

0 Set power-saving level in case of 
unplugged cable
0: No power saving
1: Power-saving level 1
2: Power-saving level 2

Table 16: Ethernet driver registry settings.

Implemented on: PC2 only

Key Value Type Default Value Comment

LEDConfig DWORD
0-8

8 Specifies the use of the LED
0: Link OK
1: RX or TX Activity
2: TX Activity
3: RX Activity
4: Collision
5: 100 Base-TX mode
6: 10 Base-T mode
7: Full Duplex
8: Link OK / Blink on RX-TX Activity 

27 



Device Driver

Key Value Type Default Value Comment

TransmitGain DWORD
0-3

1 Sets the transmit output amplitude
0: 0dB
1: 0.4dB
2: 0.8 dB
3: 1.2 dB

Speed DWORD
0/10/100

1 Link speed in Mbit/s

FullDuplex DWORD
0/1

1 Enable Full-Duplex mode

Table 17: Ethernet driver registry, settings for PicoCOM2 specifically.

Note:

To disable auto-negotiation, it is required to define the “Speed” and the “FullDuplex” value.

28



Device Driver

2.6 I²C Device Driver

The I²C interface driver is described in a separate documentation, that can be downloaded 
from http://www.picocom.de .

2.7 SPI Device Driver

The SPI interface driver is described in a separate documentation, that can be downloaded 
from http://www.picocom.de .

Note: 

The SPI driver is not part of the default kernel image. To get more information of how to  
order this driver, please contact our sales department (sales@fs-net.de)

2.8 CAN Device Driver

The CAN interface driver is described in a separated documentation,  that  can be down
loaded from http://www.picocom.de . 

29 

http://www.picocom.de/
mailto:sales@fs-net.de
http://www.picocom.de/
http://www.picocom.de/


Device Driver

2.9 Analogue Input Driver

Implemented on: PC2 only

PicoCOM2 features 3 analogue inputs. The channel to read from can either be selected with 
Channel registry value or dynamically by calling SetFilePointer() function.

The installation of the driver is done by setting some registry values under the following re
gistry key:

[HKLM\Drivers\BuiltIn\ANALOGIN]

Required settings:

Key Value Type Default 
Value

Comment

Channel DWORD 0 Initial channel to be read from Channel 
can later be selected with SetFile
Pointer().

Timout DWORD 50 Timout in ms waits for a sample to be 
completed.

Table 18: Analog input registry settings.

The analogue interface driver implements the Stream Interface. After opening the channel by 
using CreateFile(), the ReadFile() function can be called to read one value from the 
currently selected channel. ReadFile() expects the value of the passed pointer to have the 
size of WORD (2bytes). To retrieve more than one sample, a buffer (array) of several WORDS 
can be passed to ReadFile().

2.9.1 Programming example

HANDLE hAIN;

/* open analog-in driver */
hAIN = CreateFileW(L"AIN1:", GENERIC_READ|GENERIC_WRITE, 0, NULL, 
OPEN_EXISTING, 0, NULL);
if (INVALID_HANDLE_VALUE != hAIN)
{
    WORD wValue = 0;
    DWORD dwBytesRead;
    BOOL bNoError = TRUE;
        
    for(int i=0; i<3 && bNoError; i++)

30



Device Driver

    {
        /* select channel */
        SetFilePointer(hAIN, i, NULL, FILE_BEGIN);
 
        /* sample analog value 10 times */
        for(int n=10; n>0; n--)
        {
            if (ReadFile(hAIN, &wValue, 1, &dwBytesRead, NULL))
            {
                RETAILMSG(1, (L"AIN value ch%d: %d\r\n", i,
                             wValue));
            }
            else
            {
                RETAILMSG(1, (L"Reading from analog in failed (LE: \
                                %d)\r\n", GetLastError()));
            }
 
           Sleep(2);
        } /* read loop */
 
    } /* channel loop */
        
    CloseHandle(hAIN);
}
else
{
    RETAILMSG(1, (L"Can not open 'AIN1:' (LE: %d)\r\n", 
                  GetLastError()));
}

Listing 5: Analog Input programming example

31 



Device Driver

2.10 SD/MMC Card Driver

The SD card driver does offer a native card-detection pin (→ Starterkit circuit diagram). If 
you want to use this functionality you have to set the CDPin key in the registry. If no CDPin 
value is set, the CardAvailable registry flag must be set after the card has been inserted 
manually. If the card should be available permanently, this flag can be stored in registry, but 
if doing so it must be guaranteed, that the cards are already inserted during boot-up.

All configuration parameters of the SD Card Driver are located at: 

Implemented on: PC2

[HKEY_LOCAL_MACHINE\Drivers\builtin\SDHC_dev1]

Key Value Type Default 
Value

Comment

SubClass String 5 SD Host Controller class.

MaxClockRate DWORD

0-250E6

250E6 Maximum clock rate

ProgIf DWORD
0-2

0 Host controller driver interface

ControllerIndex DWORD

0/1

1 SD controller being used.

MaxError DWORD 15 Maximum number of errors, before the 
card adopts to be removed.

CardAvailable DWORD
0/1

0 Software flag that indicates if a card is in
serted. This flag must be changed manu
ally to start card initialization.

Table 19: SD/MMC Driver registry settings (PicoCOM2)

Implemented on: PC3, PC4

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\HSMMC]

32



Device Driver

Key Value 
Type

Default 
Value

Comment

BaseClockFrequency DWORD 96000000 Base clock for internal SDHC controller.
Do not change this value.

TimeoutClockFre
quency

DWORD 96000000 Clock for SDHC timeout control.
Do not change this value.

Irq DWORD 20 IRQ value.
Do not change this value.

WriteProtect DWORD
0/1

0 Software flag enable write-protection.

CardAvailable DWORD
0/1

0 Software flag that indicates if a card is 
inserted. This flag must be changed 
manually to start card initialization.

CDPin DWORD -1 IRQ Pin if you want to use a SD Card 
Connection with a specific pin. If no 
value is set you have to set the Car
dAvailable Key manually.

Table 20: SD/MMC Driver registry settings (PicoCOM3, PicoCOM4)

33 



Device Driver

2.11 Touchpanel Driver

There are three locations in registry affecting the behavior of the touch panel driver.

[HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\TOUCH]

Possible settings are:

Key Value Type Default 
Value

Comment

CalibrationData String 0,0,0,0,0
, 

Set this value to the given string to avoid 
the calibration screen after restart.

TouchSamples DWORD
3..20

7 With this value you can adjust the amount 
of samples used to create the position 
value. The more samples, the longer you 
have to press on the same place.

SamplePeriod
LowHns

DWORD 200000 
(20ms)

Sample period settings in 100 ns

units for low sample periods.

SamplePeriod
HighHns

DWORD 100000
(10ms)

Sample period settings in 100 ns

units for high sample periods.

DeltaXCoordTol
erance

DWORD
0..0x3FF

20 This value is used by the touch sample fil
ter routine to accept and reject points. In
creasing the tolerance generally allows 
faster pen movements to be detected. 
This also increases noise and tends to 
cause erratic touch behaviour.

DeltaYCoordTol
erance

DWORD
0..0x3FF

16 This value is used by the touch sample fil
ter routine to accept and reject points. In
creasing the tolerance generally allows 
faster pen movements to be detected. 
This also increases noise and tends to 
cause erratic touch behaviour.

AdcReadHoldoff
Hns

DWORD 2000 
(200us)

Amount of time (in 100 ns units) to wait 
after biasing the plates before starting an 
ADC read to determine an X or Y coordin
ate. This allows the voltage at the ADC in
put to settle. More time may be needed if 
large capacitors or other filtering devices 
are used. Too short waiting time results in 
poor touch performance (unstable pen po

34



Device Driver

Key Value Type Default 
Value

Comment

sition). Too long waiting time causes poor 
system performance and may reduce the 
touch sampling frequency.

PenDownHoldoff
Hns

DWORD 50000
(5ms)

Amount of time (in 100 ns units) to wait 
before reading the state of the plates, 
when determining whether the pen is up or 
down. Too short waiting makes it im
possible for the driver to tell the true state 
of the plates, as the inputs will not have 
enough time to settle. This can cause the 
pen to get stuck in the down position. As 
with the AdcReadHoldOffDelay, this value 
may need to be increased if large capacit
ors or other hardware filtering is present. 
Too high value causes poor system per
formance and may reduce the touch 
sampling frequency.

MinMove DWORD
1..0x3FF

5 Minimum move (A/D resolution) before 
MouseMove is signalled.

MaxMove DWORD
1..0x3FF

50 Maximum move (A/D resolution) which is 
recognized and send to application layer.

AutoCalib DWORD
0-10000

0 Time in ms before event “20” is signalled 
to application layer when touch is pressed. 
Can be used for automatic touch calibra
tion.

AutoCalib=0 disables this function.

ADCConvFreq DWORD Default: 1000000

Debug DWORD: 0 Set to 4 to get list of registry settings at 
serial debug port.

Table 21: Touch driver registry settings

35 



Device Driver

Calibration settings

[HKEY_LOCAL_MACHINE\SYSTEM\CALIBRUI]

Possible settings:

Key Value Type Default Value Comment

NoKeyboard DWORD 1 This parameter tells the touch panel calibra
tion to not wait for a keystroke at the end of 
calibration.

Table 22: Touch driver calibration settings.

Touch driver priority

[HKEY_LOCAL_MACHINE\DRIVERS\BUILTIN\TOUCH]

Possible settings:

Key Value Type Default Value Comment

Priority256
HighPriority256

DWORD 109 Set this value to adjust the priority of the 
touch panel driver.

Table 23: Touch driver priority settings.

2.11.1 Capacitive touch interface

Implemented on: PC4, PC3

Capacitive touch interfaces are the latest touch screen technology, which uses measurable 
changes in  capacitance of  the screen's  electrostatic  field  to determine the location  of  a 
touch. Unlike to resistive touch screens, this technology offers gesture and multi-touch cap
abilities which have become more important for application usability these days.

But as this touch technology by design requires customization for every hardware design it  
should be used on, it is not possible (yet) to use a touch controller module out of the shelf.  
There are lots of configuration settings that have to be parametrized (noise threshold,...). 
Thus we are working in close collaboration with our distributors. If you are interested in us
ing capacitive touch screens in your application please contact our sales department 
(sales@fs-net.de) or contact your local distributor.

36

mailto:sales@fs-net.de


Device Driver

Meanwhile,  most  kernel  images include additional  driver  for  capacitive  touch controllers, 
which can be connected to PicoCOM via I2C. These drivers are deactivated by default.

MXT224 Touch Driver
To activate the MXT touch driver there is a corresponding ndcucfg script available.  If you 
are connected to the board via telnet you just need to type the following command:

ndcucfg –B\Windows\fs_touch_mxt224.txt

This script sets all required registry settings. Here is a list of the meaning of these values  
located at:

[HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\TOUCH]

Key Value Type Default Value Comment

ChangeIO DWORD 20 Touch interrupt IO-Pin number.

ResetIO DWORD -1 IO-Pin  used  to  trigger  controller  reset 
during initialization.  A value of  -1 dis
ables this functionality.

I2CDevAddr DWORD 0x96 I2C Device address  of  the  touch con
troller.

InvertX DWORD
0/1

0 Invert all X-coordnates.

InvertY DWORD
0/1

0 Invert all Y-coordnates.

SWCalibration DWORD
0/1

0 Enable  SW  touch  calibration  which  is 
only required if the touch area is differ
ent to the display size.

Table 24: Capactive touch driver registry settings.

Note:

A touch calibration is not required as the touch controller automatically scales the touch 
sample to the screen size.

37 



Device Driver

EDT Touch Driver
If you need to use the EDT touch driver there also is a corresponding ndcucfg script avail
able. After you are connected to the board via telnet you just need to call the following com
mand:

ndcucfg -B\Windows\fs_touch_edt.txt

This script sets all required registry settings. Here is a list of the meaning of these values  
located at:

[HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\TOUCH]

Key Value Type Default Value Comment

ChangeIO DWORD 20 Touch interrupt IO-Pin number.

ResetIO DWORD 21 IO-Pin  used  to  trigger  controller  reset 
during initialization.  A value of  -1 dis
ables this functionality.

I2CDevAddr DWORD 0x70 I2C Device address  of  the  touch con
troller.

Table 25: Capactive touch driver registry settings.

After you activated this touch driver you should call the touch calibrate command, to 
use the touch panel correctly. Don't forget to save the registry settings with the reg save 
command.

38



Modules and Utilities

3 Modules and Utilities

3.1 NDCUCFG utility

This utility is always included in the WindowsCE image and enables access to the registry 
from the command line and to call some additional helper functions.

Ndcucfg.exe can be started via serial line, telnet or within a command window. By default, 
ndcucfg.exe is started from a Launch/Depend configuration in 

[HKEY_LOCAL_MACHINE\Init]

and receives commands via serial line COM1. If you want to change the serial line, you can 
find settings of ndcucfg.exe under the following registry key:

[HKEY_LOCAL_MACHINE\System\NDCUCFG]

Possible settings:

Key Value Type Default Value Comment

Port String COM1: NDCUCFG will be started automatically 
during  boot  because  of  an  entry  in 
HKLM\Init key.

With this  value you can specify which 
serial interface ndcucfg uses for com
munication.

BatchFile String The commands in the file specified here 
are executed during start of ndcucfg.

Table 26: ndcucfg registry settings.

List of commands (abstract):

display mode set <mode> Changes the display mode to the given number.

display mode get Retrieves the display mode.

display rotate get Retrieves the display rotation angle.

display rotate set <n> Changes the display rotation to the given angle. (pos
sible values: 1…4)

reg open Opens the root key under HKLM

reg open <key> Opens the specified key under HKLM

reg enum Displays a list of all keys and values under the current 
location.

39 



Modules and Utilities

reg opencu <key> Opens the specified key under HKCU

reg enum Displays a list of all keys and values under the current 
location

reg set value <name> dword 
<value>

Sets/creates the value with name <name> to the value 
<value>

reg set value <name> string 
<value>

reg set value <name> multi 
<value1>;<value2>

reg set value <name> hex 
<value>,<value>,<value>

reg create key <name> Creates the specified sub-key and opens it.

reg del value <name> Delete the specified value from registry.

reg del key <name> Delete the specified key from registry.

reg save Saves the registry in flash memory, so that modifica
tions are available after reset.

fat format <volume> Formats the volume with name <volume>.

contrast + Increase contrast voltage of LCD (small steps)

contrast ++ Increase contrast voltage of LCD (large steps)

contrast - Decrease contrast voltage of LCD (small steps)

contrast -- Decrease contrast voltage of LCD (large steps)

contrast get Returns the current contrast voltage of LCD.

contrast set <n> Sets the contrast voltage of LCD. The value is the high 
time for the PWM circuit.

backlight on Switch on backlight of LCD.

backlight off Switch off backlight of LCD.

touch calibrate Shows the calibration screen for the touch panel.

sip on Shows the input panel window.

sip off Hides the input panel window.

reboot Reboots the device.

cert import cert <store> <file> Import certificate with filename <file> into certificate 
store <store>. Values for <store> MY, CA or ROOT.

cert import pkey <store> <file> Import private key from file into certificate store MY, CA 
or 
ROOT.

cert enum List all certificates from store MY, CA and ROOT.

cert delete <store> <store name> Delete certificate.

user create <name> <password> Creates new use with password.

user enum List all users

40



Modules and Utilities

REM <comment> Records comments (remarks) in a batch file.

ECHO <message> Displays messages.

start <file name> <parameter> Creates a new process and its primary thread.

ndcucfg -B<file name> runs <file name> as batch process.
Listing 6: ndcucfg commands (abstract)

Note:

A detailed list of all available commands are displayed with the command “help”.

3.2 Module NETUI

This module implements the user interface for network access. It is used if  a network re
source is accessed needing a user and password. By setting the described parameters, it is 
possible to avoid the normally shown dialogue box.

The value can be found under key:

[HKLM\System\NETUI]

Parameter:

Key Value Type Default Value Comment

AutoLogon DWORD 0/1 Set this value to 1 to use registry values 
UserName and  Password for  network 
access  without  opening  a  credential 
window.

Username String Username  used  to  access  a  network 
share.

Password String Password  used  to  access  a  network 
share.

Table 27: NetUI registry settings.

Warning:

Using this option causes a security risk as the password will be stored in plain text.

41 



Modules and Utilities

3.3 Core SSH support

The SSH daemon is a Windows CE port based on the OpenSSH project. It makes encrypted 
communication between a client and our devices possible. To set up a connection to the 
device, you need a SSH client program. There are many programs like PuTTY or WinSCP 
available in the web. The original server program supports several authentication methods 
but this port includes only two of them. You can use the Password or the Private Key Authen
tication method. For a Password Authentication you have to creat a user with password on 
the device by using the NTLM protocol. Our standard utility NDCUFG (see chapter 3.1) have 
some command line functions based on the NTLM protocol that can be used. For the au
thentication methode Public Key you need a Public and a Private Key. The client use the 
Private Key to authententicate them against the server and the server need the Public Key to 
verify the Private Key. The most recommanded utility to generate the Keys is PuTTYgen. 
After generation the Public Key must be copied into the “authorized_keys2” file on the device 
and the Private Key is necessary on the client system. The server need additionally a Host 
Key named “ssh_host_dsa_key”. This key is used by the client and the server to encrypt and 
decrypt the communication data. You can also generate this key with PuTTYgen but our 
server generate a random Host Key automatically during first startup. It is possible to change 
some server settings in the “sshd_config” file. You can find the keys and the config file in the 
directory “FFSDISK\SSH\” on our devices. This port run as Windows service and can be 
started or stopped dynamically during runtime by using the services commands. There are 
also some registry parameters which can for example deactivate the SSH daemon com
pletely.

The values can be found under key:

[HKLM\Services\SSHD]

Key Value Type Default Value Comment

Flags DWORD 0 or 16 Service is active. To deactivate it gener
ally, set this value to 4.

Dll String Name of the library which is loaded by 
the Services.exe.

Order DWORD <10 Service load order.

Prefix String Präfix for the Services list.

Index DWORD 0 Service Index.

Keep DWORD 1 If  Keep = 0,  the DLL will  be unloaded 
immediately after initialization.

ServiceContext DWORD 1 Initial value passed into the initialization 
routine.

42



Modules and Utilities

Key Value Type Default Value Comment

FriendlyName String Service name in Services list.

UserProcGroup DWORD 2 System value.

Table 28: SSHD Server settings.

The location for the sshd_config file is defined in the registry under key:

[HKLM\Comm\SSH]

Key Value Type Default Value Comment

SSHROOTDIR String /FFSDISK/SSH Location for the “sshd_config” file

Table 29: SSH Root Location.

43 



Modules and Utilities

3.4 Extending the search path

It is possible to extend the default path, which the kernel uses to locate executable files. The 
necessary entry can be found under registry key:

[HKEY_LOCAL_MACHINE\Loader]

Possible settings:

Key Value Type Default Value Comment

SystemPath Multi \\FFSDISK\\ To  extend  the  path  you  must  extend 
these values.

Table 30: Extending search path.

The SystemPath value has a maximum length of MAX_PATH characters, which includes the 
terminating NULL character. Any path specified by the OEM, is the last path to be when look
ing for a EXE. This registry value is only read during system boot.

44



Appendix

4 Appendix

Listings

Listing 1: Accessing Device Drivers within an application........................................................3

Listing 2: Disabling a device driver via registry........................................................................3

Listing 3: Digital I/O programming example..........................................................................13

Listing 4: Programming example how to set RTS toggle mode to enable RS485.................24

Listing 5: Analog Input programming example......................................................................31

Listing 6: ndcucfg commands (abstract)...............................................................................41

List of Figures

  
Figure 1: Windows CE Stream interface driver architecture....................................................1

Figure 2: LCD power sequencing diagramm - Mode1...........................................................21

Figure 3: LCD power sequencing diagramm - Mode2...........................................................21

Figure 4: LCD power sequencing diagramm - Mode1...........................................................21

Figure 5: LCD power sequencing diagramm - Mode3...........................................................22

Figure 6: LCD power sequencing diagramm - Mode4...........................................................22

Figure 7: LCD power sequencing diagramm - Custom mode................................................23

Figure 8: FSMixer screenshot...............................................................................................26

List of Tables

Table 1: Default stream driver regsitry settings.......................................................................3

Table 2: Digital I/O registry settings.........................................................................................5

Table 3: Digital I/O interrupt configuration values....................................................................5

Table 4: Digital IO pins - PicoCOM2........................................................................................7

Table 5: Digital IO pins - PicoCOM4........................................................................................8

Table 6: Digital IO pins - PicoCOM3........................................................................................9

Table 7: Digital IO pins - PicoCOM5......................................................................................10

45 



Appendix

Table 8: Registry configuration example for using IO-Pin 12 as Input pin.............................11

Table 9: Basic display settings in registry..............................................................................15

Table 10: Predefined display modes.....................................................................................16

Table 11: Display settings in registry......................................................................................19

Table 12: Display type settings..............................................................................................19

Table 13: Display config settings...........................................................................................20

Table 14: Serial I/O registry settings.....................................................................................24

Table 15: Audio driver registry settings..................................................................................26

Table 16: Ethernet driver registry settings.............................................................................27

Table 17: Ethernet driver registry, settings for PicoCOM2 specifically...................................28

Table 18: Analog input registry settings.................................................................................30

Table 19: SD/MMC Driver registry settings (PicoCOM2).......................................................32

Table 20: SD/MMC Driver registry settings (PicoCOM3, PicoCOM4)....................................33

Table 21: Touch driver registry settings.................................................................................35

Table 22: Touch driver calibration settings.............................................................................36

Table 23: Touch driver priority settings..................................................................................36

Table 24: Capactive touch driver registry settings.................................................................37

Table 25: Capactive touch driver registry settings.................................................................38

Table 26: ndcucfg registry settings........................................................................................39

Table 27: NetUI registry settings...........................................................................................41

Table 28: SSHD Server settings............................................................................................43

Table 29: SSH Root Location................................................................................................43

Table 30: Extending search path...........................................................................................44

Important Notice

The information in this publication has been carefully checked and is believed to be entirely 
accurate at the time of publication. F&S Elektronik Systeme assumes no responsibility, how
ever, for possible errors or omissions, or for any consequences resulting from the use of the 
information contained in this documentation.

F&S Elektronik Systeme reserves the right to make changes in its products or product spe
cifications or product documentation with the intent to improve function or design at any time 
and without notice and is not required to update this documentation to reflect such changes.

F&S Elektronik  Systeme makes no warranty or  guarantee regarding the suitability of  its 
products for any particular purpose, nor does F&S Elektronik Systeme assume any liability 

46



Appendix

arising out of the documentation or use of any product and specifically disclaims any and all  
liability, including without limitation any consequential or incidental damages.

Products are not designed, intended, or authorised for use as components in systems inten
ded for applications intended to support or sustain life, or for any other application in which 
the failure of the product from F&S Elektronik Systeme could create a situation where per
sonal  injury  or  death  may  occur.  Should  the  buyer  purchase  or  use  a  F&S  Elektronik 
Systeme product for any such unintended or unauthorised application, the Buyer shall in
demnify and hold F&S Elektronik Systeme and its officers, employees, subsidiaries, affili
ates, and distributors harmless against all claims, costs, damages, expenses, and reason
able attorney fees arising out of, either directly or indirectly, any claim of personal injury or 
death that may be associated with such unintended or unauthorised use, even if such claim 
alleges that F&S Elektronik Systeme was negligent regarding the design or manufacture of  
said product.

47 


	1 Windows CE Stream Interface Driver
	1.1 Common registry settings for Steam Interface Drivers
	1.2 Example of use

	2 Device Driver
	2.1 Driver for Digital I/O
	2.1.1 IO-Pins
	2.1.2 Configuration example
	2.1.3 Programming example
	Example

	2.1.4 Troubleshooting

	2.2 LCD-Display Driver
	Table Register Type:
	Table Register Config:
	2.2.1 LCD power on sequences

	2.3 Driver for Serial I/O (UART)
	RS485 Mode

	2.4 Audio Driver
	2.4.1 Volume controls
	FSMixer


	2.5 Ethernet Driver
	2.6 I²C Device Driver
	2.7 SPI Device Driver
	2.8 CAN Device Driver
	2.9 Analogue Input Driver
	2.9.1 Programming example

	2.10 SD/MMC Card Driver
	2.11 Touchpanel Driver
	Calibration settings
	Touch driver priority
	2.11.1 Capacitive touch interface


	3 Modules and Utilities
	3.1 NDCUCFG utility
	3.2 Module NETUI
	3.3 Core SSH support
	3.4 Extending the search path

	4 Appendix
	Listings
	List of Figures
	List of Tables
	Important Notice


