
Software Documentation
NetDCUx

Native I2C – Software Interface for .NET

Version 1.01
2007-10-04

© F&S Elektronik Systeme GmbH

Untere Waldplätze 23

D-70569 Stuttgart

Fon: +49(0)711-123722-0

Fax: +49(0)711 – 123722-99

History

Date V Platform A,M,R Chapter Description Au

2015-07-09 1.01 all M * Changed to new corporate design JG

V Version

A,M,R Added, Modif ied, Removed

Au Author

Software Documentation Native I2C – Software Interface for .NET | 1 of 32

Table of Contents

History 1

Table of Contents 1

1 Introduction 2

2 Installing the NI2C Software Driver 3

2.1 Installation with the CAB file ... 3
2.2 Manual installation .. 4
2.3 Installing the .NET library NativeI2C.dll .. 5

3 The NI2C Driver in Applications 6

3.1 Messages and Transmission Requests.. 7
3.2 Status Flags and Scanning the Bus.. 11

4 The NI2CFile class 14

4.1 NI2CFile() (Construction) .. 15
4.2 HandleErrorsViaReturn()... 16
4.3 Schedule() ... 17
4.4 GetResult() .. 18
4.5 SkipResult() ... 19
4.6 CheckResult().. 20
4.7 GetClockFreq() .. 21
4.8 enum NI2C_FLAGS .. 22
4.9 enum NI2CAccess .. 23
4.10 enum APIError... 24
4.11 struct NI2C_MSG_HEADER ... 25

5 The NI2CException class 26

5.1 NI2CException() (Construction) .. 27

6 Appendix 31

Software Documentation Native I2C – Software Interface for .NET | 2 of 32

1 Introduction

Some of the NetDCU and PicoMOD boards support the so-called Native I²C, or NI2C for
short. This is an I²C bus directly implemented by some dedicated hardware of the board,
usually the micro-controller itself. This document describes, how the appropriate device
driver is installed and how this I²C bus can be used in applications written in a Microsoft

.NET programming language like C# or Visual Basic.

The main device driver provides a Win32 interface. To use this driver from .NET, an

additional library called NativeI2C.dll is required. This library provides some useful data

types and classes to access the NI2C driver interface in a comfortable way from the .NET

environment. For example we introduce the wrapper class NI2CFile for access and a spe-

cial exception class NI2CException, allowing easy error handling.
In the following chapters, the programming concept of NI2C, all functions and all data types

provided by NativeI2C.dll are explained. We also have included some sample

programs, showing the usage of the NI2CFile class.
Please note that this documentation is only valid for the Native I2C. There is a second I2C
driver available on some boards emulating the I²C bus with GPIOs. This other driver will not
be discussed here.

Remark

In the remaining document we’ll use the term “NetDCU” as generic reference to all

our Windows CE boards. This should also include PicoMOD boards, even if they are
not mentioned especially.

Software Documentation Native I2C – Software Interface for .NET | 3 of 32

2 Installing the NI2C Software Driver

The NI2C driver is usually installed as I2C1:. We provide a special Windows Cabinet File
(“CAB-File”) for an automatic installation, but you can also do the installation manually.

2.1 Installation with the CAB file

The easiest way to install the driver is to use the provided Windows Cabinet File ni2c.cab.
Just copy this file to the board (e.g. to the root directory) and double click on it. This will

automatically install the driver as I2C1:. When asked for a destination directory, just click

OK. All registry settings will be done for the default values and the CAB file will vanish again
when done.
If you don’t have access to a mouse or touch panel on the NetDCU, or if you even don’t use
a display at all, you can also do the CAB file installation on the command line. Just type the
following command:
wceload /noui ni2c.cab

If you need settings other than the defaults, you can edit the registry values anytime after
installation is complete.

Software Documentation Native I2C – Software Interface for .NET | 4 of 32

2.2 Manual installation

You can also do the installation by hand. This requires setting some registry entries.
Installation of the I²C driver takes place in the registry under
[HKLM\Drivers\BuiltIn\I2C1]

Entry Type Value Description

Dll String ni2c.dll Driver DLL

FriendlyNam

e

String Native

I2C

driver

Description

Prefix String I2C For I2C1:

Index DWOR
D

1 For I2C1:

Order DWOR
D

101 Load sequence

ClockFreq DWOR
D

200000 in Hz

Priority256 DWOR
D

103 Thread priority

Debug DWOR
D

0 Debug
verbosity

Most of the values will get meaningful defaults if omitted, only those values highlighted in

grey above really have to be given. The library ni2c.dll has to be stored in flash memory

into the \FFSDISK directory, if it is not already pre-loaded in the kernel.

There is a file ni2c-reg.txt provided on the CD that allows doing these settings in

NDCUCFG. Just edit the file to set your specific values, then send the text file to NDCUCFG.
Please refer to the document “NetDCU: NI2C – Native I²C Support” for further installation
details of the driver.

If you also plan to use the 5-wire touch panel adapter NetDCU-ADP-TP5, then ni2c.dll

must be installed as I2C1:, or the touch panel won’t work. Please refer to the separate

document “NetDCU: NetDCU-ADP-TP5 – 5-Wire Touch Panel” (NetDCU_ADP-

TP5_eng.pdf) for how to set up the touch panel.

Software Documentation Native I2C – Software Interface for .NET | 5 of 32

2.3 Installing the .NET library NativeI2C.dll

To use the NativeI2C.dll library for .NET, you have to copy it to your PC, for example to
your Visual Studio project directory, and add a reference to it in your project. This can be
done in two ways:

1. In the solution explorer, right click on the “References” entry and select “Add

Reference...”

2. In menu “Project” select “Add Reference...”

In both cases you will be presented with a dialog having several tabs. Click on the tab

“Browse” and search for the NI2CFile.dll in your project directory. After clicking OK,
entry “NativeI2C” will appear in the References section of the Solution Explorer.

If the NI2CFile class is not automatically recognized in the editor immediately, close and
re-open your solution. Now the new objects should be supported by the editor.

Software Documentation Native I2C – Software Interface for .NET | 6 of 32

3 The NI2C Driver in Applications

When using the NI2C driver in own applications, please keep in mind that you always have
to co-operate with other applications using devices on the same I²C bus. For example it is a
rather common case, that the 5-wire touch panel driver also accesses the same bus, so
don’t block the bus longer than required or else the touch panel operation will suffer.
On the other hand you have to be aware that the touch panel driver communicates with its
I²C hardware about 50 times per second (on standard settings) and thus may issue transfers
between any of your own transmission requests, probably delaying your communication
slightly. However the NI2C driver keeps transmission requests strictly separated, and serves
them in a first come first serve manner, as fast as the I²C bus allows. So the data of different
programs will not mix up, each request is finished before the next request is scheduled.

Remark:

The NI2C driver is designed to work as a sole master, all other devices must be
slaves. If another device on the I²C bus takes the role of a master and starts
sending, the driver will fail.

NI2C
Driver

User Appli-

cation 1

User Appli-
cation n

5-Wire
Touchpanel
Driver

Global
Transmis-

sion
Request

Queue

...

Software Documentation Native I2C – Software Interface for .NET | 7 of 32

3.1 Messages and Transmission Requests

A message is the basic element of communicating with a device. A message may either
send some bytes to, or receive some bytes from a specific I²C device.
A transmission request is a group of arbitrary messages, executed in one go. Therefore a
transmission request can switch forth and back between sending and receiving at will, de-
pending on the contained messages. It is also not restricted to communicate with one single
device, each message can talk to a different device.

Example
This is a transmission request with four messages.
1. Send 1 byte to device A
2. Receive 2 bytes from device A
3. Send 3 bytes to device B
4. Receive another 2 bytes from device A

Such a transmission request is handled as a whole, even if other requests are in the queue.
It is essential that every program participating in the I²C bus communication behaves fair and
only groups those messages in a single transmission request that really must belong
together and can not be split.
The NI2C driver handles transmission requests in a non-blocking way. So you first have to

prepare the request, including all the data bytes to be sent, and then call a Schedule()
function. This function puts the request in a global request queue and then returns immedi-
ately. The driver now handles the transmission in the background and later, when the

transmission is complete, you can call another function GetResult() to retrieve the result,
i.e. the data bytes that were received and the success status of each message.

The data structures are rather simple. You have to prepare two arrays. One array with
message headers defining the message parameters, and a second array with all the bytes to
transfer. This second array comprises all bytes of all messages is one array. You have to
give dummy bytes in those places, where data will be received, as the NI2C driver will simply
fill in the received data into these spaces. This allows giving the same data structures and
pointers to the scheduling function as well as the result retrieving function.

Prepare data to send

Schedule request

Store in queue

Handle transmission

Return result

(Do something else)

Retrieve result

Use received data

Schedule()

Success

User application NI2C driver

Success

GetResult()

Software Documentation Native I2C – Software Interface for .NET | 8 of 32

File ni2cio.h contains the required types and structures.

/* Status flags used in NI2C_MSG_HEADER */

[Flags]

public enum NI2C_FLAGS : uint

{

 LASTBYTE_ACK = 0x01,

 DATA_NAK = 0x02,

 DEVICE_NAK = 0x04,

 ARBITRATION_LOST = 0x08,

 TIMEOUT = 0x80

}

/* Message header */

[StructLayout(LayoutKind.Sequential)]

public struct NI2C_MSG_HEADER

{

 public byte chDevAddr;

 public byte chFlags;

 public ushort wLen;

 public NI2C_MSG_HEADER(byte chDevAddr, byte chFlags,

 ushort wLen);

}

As you can see, the transfer direction (send or receive) is indicated in bit 0 of the device
address byte. Therefore the address is in bits 1 to 7 (shifted 1 bit to the left). This is identical
to the way how address and direction are actually transmitted on the I²C bus. We always use
this representation for device addresses in this document. For example instead of the
unshifted address 0x38 we use the shifted address 0x70 (which gets 0x71 when receiving
data).
Let’s continue the transmission request example from above. Assume address A is 0x70,
address B is 0x94, the byte to send in step 1 is 0x12, and the three bytes to send in step 3
are 0x34, 0x56, and 0x78. We’ll use 0x00 for the receive dummy bytes. Then the data
structure for this transmission request is as follows.

Software Documentation Native I2C – Software Interface for .NET | 9 of 32

0x12

0x00

0x00

0x34

0x56

0x78

0x00

0x00

chDevAddr

= 0x70

chFlags

= 0x00

w Len = 0x0001

chDevAddr
= 0x71

chFlags
= 0x00

w Len = 0x0002

chDevAddr
= 0x94

chFlags
= 0x00

w Len = 0x0003

chDevAddr
= 0x71

chFlags
= 0x00

w Len = 0x0002

Message header array Byte array

Message 1:

Send 1 byte

Message 2:

Receive 2 bytes

Message 3:

Send 3 bytes

Message 4:

Receive 2 bytes

Software Documentation Native I2C – Software Interface for .NET | 10 of 32

This might result in the following C# code.
/**/

/*** File: ni2c-example.cs ***/

/*** Author: Hartmut Keller, (C) F&S 2007 ***/

/*** ***/

/*** Description: Example for NI2C transmission request ***/

/**/

using System;

using System.Collections.Generic;

using System.Text;

using FS.NetDCU;

namespace FS.NetDCU

{

 class NI2C_Example

 {

 static void Main(string[] args)

 {

 /* Message headers for transmission request */

 NI2CFile.NI2C_MSG_HEADER[] mymsg =

 new NI2CFile.NI2C_MSG_HEADER[]

 {

 new NI2CFile.NI2C_MSG_HEADER(0x70, 0x00, 0x0001),

 new NI2CFile.NI2C_MSG_HEADER(0x71, 0x00, 0x0002),

 new NI2CFile.NI2C_MSG_HEADER(0x94, 0x00, 0x0003),

 new NI2CFile.NI2C_MSG_HEADER(0x71, 0x00, 0x0002)

 };

 /* Data bytes for transmission request */

 byte[] mydata =

 {

 0x12, /* Message 1: send 1

byte */

 0x00, 0x00, /* Message 2: receive

2 bytes */

 0x34, 0x56, 0x78, /* Message 3: send 3 bytes

*/

 0x00, 0x00, /* Message 4: receive

2 bytes */

 };

 /* Create NI2CFile object */

 NI2CFile ni2c = new NI2CFile("I2C1:",

 NI2CFile.NI2CAccess.READ_WRITE);

 /* Schedule transmission request */

 ni2c.Schedule(mymsg, mydata);

 /* ... Do something else here ... */

 /* Retrieve and print result */

 ni2c.GetResult(mymsg, mydata);

 Console.WriteLine(

 "Received in message 2: 0x{0:X2} 0x{1:X2}",

 mydata[1], mydata[2]);

 Console.WriteLine(

 "Received in message 4: 0x{0:X2} 0x{1:X2}",

 mydata[6], mydata[7]);

 }

 }

}

Software Documentation Native I2C – Software Interface for .NET | 11 of 32

3.2 Status Flags and Scanning the Bus

We haven’t talked about the chFlags value contained in the message header yet. Here the
NI2C driver registers the success or failure of each message transmission.
The I²C protocol defines that after each transferred byte the receiving side of the
communication has to issue an acknowledgement. A missing acknowledgement right after
sending the device address is a special case and indicates that no device with this address
exists. Otherwise a missing acknowledgement after a data byte indicates the end of the
transmission.

The NI2C driver reports in the chFlags value whether the message transmission
succeeded or not. So after having retrieved the result of the transmission request, you can

check the chFlags values of all individual messages to get a status report. It can be any
combination of the following values.

Flag Explanation

LASTBYTE_ACK The last by te sent was acknowledged. This might
be an indication f or some error as the receiv ing

dev ice expected more data.

DATA_NAK There was a missing acknowledgement some-

where in the middle of the message bef ore the
last by te. The receiv ing dev ice could not take

more data. The transmission was aborted at this

point.

DEVICE_NAK When sending the dev ice address, it was not
acknowledged, i.e. no dev ice responded. The

message could not be transmitted.

ARBITRATION_LOST The I²C bus was already busy when the message
transf er was about to start. Theref ore the

message could not be transmitted.

TIMEOUT The NI2C driv er did not get a hardware response

within a timeout period of about 1 second

All flags but LASTBYTE_ACK indicate an aborted transfer. To mark the abortion point, the
NI2C driver inverts the bit patterns of all bytes of the message that were not transmitted.

Example
The following message bytes should be sent:
0x11 0x22 0x33 0x44 0x55

After the transmission, the chFlags value shows that the DATA_NAK flag is set. The data
bytes array now shows the corresponding bytes as
0x11 0x22 0x33 0xBB 0xAA

This tells us that the first three bytes were successfully transmitted, but the
acknowledgement was missing on the third byte, and therefore the last two bytes were not
transmitted anymore.

By looking at the DEVICE_NAK flag, we can tell if a device responded to the message. This
can be used to scan the bus for the specific address or the mere existence of some device.
Simply send the device address with no data bytes. If the device sends an
acknowledgement, we know that it exists.

Example
The ADS7828 is an 8 channel ADC from Texas Instruments. The device has two
configurable address lines, the five most significant bits are fixed as 10010. This means it
can be configured to listen on address 0x90, 0x92, 0x94, or 0x96.
The following C# code determines the actual address of the device on the I²C bus.

Software Documentation Native I2C – Software Interface for .NET | 12 of 32

/***/

/*** File: ni2c-scan.cs ***/

/*** Author: Hartmut Keller, (C) F&S 2007 ***/

/*** ***/

/*** Description: NI2C bus scan for ADS7828 device ***/

/***/

using System;

using System.Collections.Generic;

using System.Text;

using FS.NetDCU;

namespace FS.NetDCU

{

 class NI2C_Scan

 {

 static void Main(string[] args)

 {

 /* Message headers for scan transmission request */

 NI2CFile.NI2C_MSG_HEADER[] scanmsg =

 new

NI2CFile.NI2C_MSG_HEADER[]

 {

 new NI2CFile.NI2C_MSG_HEADER(0x90, 0x00, 0x0000),

 new NI2CFile.NI2C_MSG_HEADER(0x92, 0x00, 0x0000),

 new NI2CFile.NI2C_MSG_HEADER(0x94, 0x00, 0x0000),

 new NI2CFile.NI2C_MSG_HEADER(0x96, 0x00, 0x0000)

 };

 /* No data bytes needed for the above request */

 byte[] scandata = {};

 /* Create NI2CFile object */

 NI2CFile ni2c = new NI2CFile("I2C1:",

 NI2CFile.NI2CAccess.READ_WRITE);

 /* Send scanning transmission request */

 ni2c.Schedule(scanmsg, scandata);

 ni2c.GetResult(scanmsg, scandata);

 /* Check if any of the scanned addresses was

 acknowledged */

 byte myAddr = 0;

 foreach (NI2CFile.NI2C_MSG_HEADER msg in scanmsg)

 {

 if (msg.chFlags == 0)

 {

 myAddr = msg.chDevAddr;

 break;

 }

 }

 /* Print result */

 if (myAddr != 0)

 Console.WriteLine(

 "ADS7828 on address 0x{0:X2}",

myAddr);

 else

 Console.WriteLine("No ADS7828 found");

 }

 }

}

Software Documentation Native I2C – Software Interface for .NET | 13 of 32

As you can see it is very easy to expand this example to scan for more device addresses.
Simply add more messages to the scanmsg array.

One last thing. When receiving data, the chFlags value serves yet another purpose. Most

I²C devices send data bytes until they receive no acknowledgement anymore. So the normal
behaviour of the NI2C driver is to not acknowledge the last byte received. For example in a
message to receive five bytes, the driver acknowledges the first four bytes, but not the fifth
byte.
However in special cases you might like the driver to acknowledge all bytes, including the

last byte. This can be achieved by setting the chFlags value of the specific message(s) to

LASTBYTE_ACK before scheduling the request. Then the driver will also acknowledge the
last byte.
Please note that setting this value makes only sense in receiving messages. Setting other

bits in chFlags has no effect.

Remark

The examples ni2c-example.cs and ni2c-scan.cs are also available as Visual

Studio 2005 projects on the CD.

Software Documentation Native I2C – Software Interface for .NET | 14 of 32

4 The NI2CFile class

The NI2CFile class defines all functions needed for accessing the I²C bus, including some

data types, constants and enumerations. The class is embedded in the FS.NetDCU name-

space, so the fully qualified name is FS.NetDCU.NI2CFile.

First we will describe the member functions, then follow the data types used together with
them in the second part of this chapter.

Error Handling
As with most low-level Windows drivers written in C, it is common for a function to return an
error or success value as the direct return value and return any requested data in data
structures passed by reference as parameters. Contrary to this, modern languages like C#
usually use asynchronous exceptions to report failure and therefore can use the return value
directly to transfer the requested data, usually as objects.

With the NI2CFile class, we let you choose what behaviour you want. By default any error

in a NI2CFile function will throw a NI2CException. However you can change this

behaviour by calling HandleErrorsViaReturn() immediately after constructing the

NI2CFile object. This switches this instance to the C style convention and then each
function returns 0 for success and an error value different from 0 for failure.

Software Documentation Native I2C – Software Interface for .NET | 15 of 32

4.1 NI2CFile() (Construction)

Signature:
NI2CFile(string FileName, NI2CAccess access)

Parameters:

FileName Name of the device (I2C1:, I2C2:)

access Access type: Device query access, read access, write access, or read-write
access.

Description:
Open the device file. Throw a NI2CPortException if it fails. The device file is

automatically closed by the destructor when the object is destroyed.
The NI2C bus usually has the device name I2C<n>: where <n> is the number of the port,

usually 1. The access defines whether you want to transmit or receive messages.

For the description of NI2Access see page 23.

Example:
try

{

 // Create a NI2CFile object

 NI2CFile pNI2C =

 new NI2CFile("I2C1:", NI2CFile.NI2CAccess.READ);

}

catch (NI2CException e)

{

 // Handle error according to e.Reason

}

Software Documentation Native I2C – Software Interface for .NET | 16 of 32

4.2 HandleErrorsViaReturn()

Signature:
void HandleErrorsViaReturn(bool bCStyle)

Parameters:

bCStyle true: Return error as return value

false: Throw exception on error (default)

Description:
Determine how errors are reported. This can be either by returning an error value (like in C),
or by throwing an exception. This function is usually used right after creating the NI2CFile
object.
Please note that the constructor of NI2CFile itself will always throw an exception on error.
There is no way of defining the behaviour before calling the constructor and there is no way
to return an error value from a constructor.

Example 1:
// Create a NI2CFile object

NI2CFile pNI2C =

 new NI2CFile("I2C1:", NI2CFile.NI2CAccess.READ_WRITE);

// Set error handling by return value

pNI2C.HandleErrorsViaReturn(true);

// Schedule a request and check for error

int err = pNI2C.Schedule(...);

if (err != 0)

 Console.WriteLine("Error {0} in Schedule()", err);

Example 2:

// Create a NI2CFile object

NI2CFile pNI2C =

 new NI2CFile("I2C1:", NI2CFile.NI2CAccess.READ_WRITE);

// Set exception error handling

pNI2C.HandleErrorsViaReturn(false);

// Schedule a request and check for error

try

{

 pNI2C.Schedule(...);

}

catch (NI2CException e)

{

 Console.WriteLine("Error {0} in Schedule()", e.Reason);

}

Both examples do exactly the same, however one uses the error reporting via return values
and the other the exception mechanism for errors.

Software Documentation Native I2C – Software Interface for .NET | 17 of 32

4.3 Schedule()

Signature:
int Schedule(NI2C_MSG_HEADER[] msg,

 byte[] data)

Parameters:

msg Array of message headers

data Array of data bytes for all messages

Return:

0 Success

!=0 Error from GetLastWin32Error()

Description:
This command copies the given data to the global transmission request queue and
schedules the request for execution. Then it returns immediately. The execution of the
request takes place in the background.

The result of the request must either be retrieved with GetResult() or discarded with

SkipResult(). You can use CheckResult() to check whether the transmission is
complete.
See section starting at page 7 for how to set up the data arrays.

Software Documentation Native I2C – Software Interface for .NET | 18 of 32

4.4 GetResult()

Signature:
int GetResult(NI2C_MSG_HEADER[] msg,

 byte[] data)

Parameters:

msg Array of message headers

data Array of data bytes for all messages

Return:

0 Success

!=0 Error from GetLastWin32Error()

Description:
Waits until at least one transmission request is complete.
If the structure of the given parameters matches the structure of the completed transmission
request, the message headers of the request are copied from the global transmission

request queue to msg, and the data bytes are copied from the global queue to data. Here
the data bytes contain both, the sent bytes and the received bytes. And you can check the

chFlags values of the returned message headers to get information about the success or
failure of each individual message of the transmission request.
If more than one transmission request is pending, their results must be retrieved in the same

order as the requests were issued with Schedule(). If the structure of the arguments does

not match, GetResult() will fail.
Please note that this call will block if no result is available. But you can use

CheckResult() in advance to check whether some transmission is already complete.
See section starting at page 7 for how to set up the data arrays and page 11 on how to

interpret the returned chFlags values

Example:
// Create a NI2CFile object

NI2CFile pNI2C =

 new NI2CFile("I2C1:", NI2CFile.NI2CAccess.READ_WRITE)

// Set up arrays for scheduling

NI2CFile.NI2C_MESSAGE_HEADER [] msg = ...;

byte [] data = ...;

// Schedule a request

pNI2C.Schedule(msg, data);

// Prepare different result arrays of same size as in Schedule()

NI2CFile.NI2C_MESSAGE_HEADER [] resultmsg =

 new NI2CFile.NI2C_MESSAGE_HEADER[msg.Length];

byte [] resultdata = new byte [data.Length];

// Wait for completion and get answer into new array

pNI2C.GetResult(resultmsg, resultdata);

Software Documentation Native I2C – Software Interface for .NET | 19 of 32

4.5 SkipResult()

Signature:
int SkipResult()

Return:

0 Success

!=0 Error from GetLastWin32Error()

Description:
Waits until at least one transmission request is complete and then discards the result.
Please note that this call will block if no result is available. But you can use

CheckResult() in advance to check whether some transmission is already complete.

Example:
// Create a NI2CFile object

NI2CFile pNI2C = new NI2CFile("I2C1:", NI2CFile.NI2CAccess.READ_WRITE)

// Set up arrays for two requests

NI2CFile.NI2C_MESSAGE_HEADER [] msg1 = ...;

byte [] data1 = ...;

NI2CFile.NI2C_MESSAGE_HEADER [] msg2 = ...;

byte [] data2 = ...;

// Schedule the requests

pNI2C.Schedule(msg1, data1);

pNI2C.Schedule(msg2, data2);

// Wait for completion, discard the first and get the second result

pNI2C.SkipResult();

pNI2C.GetResult(msg2, data2);

Software Documentation Native I2C – Software Interface for .NET | 20 of 32

4.6 CheckResult()

Signature:
int CheckResult()

Return:

0 All transmissions still in progress

!=0 At least one transmission is complete

Description:
Checks if a completed transmission request exists. If yes, the result can be retrieved with
GetResult() or discarded with SkipResult() without blocking.

Example:
// Create a NI2CFile object

NI2CFile pNI2C =

 new NI2CFile("I2C1:", NI2CFile.NI2CAccess.READ_WRITE)

// Set up arrays

NI2CFile.NI2C_MESSAGE_HEADER [] msg = ...;

byte [] data = ...;

// Schedule the request

pNI2C.Schedule(msg, data);

// Wait until done

while (pNI2C.CheckResult() == 0)

{

 // Do something else...

}

// Get answer without further waiting

pNI2C.GetResult(msg, data);

Software Documentation Native I2C – Software Interface for .NET | 21 of 32

4.7 GetClockFreq()

Signature:
int GetClockFreq()

Return:

clkfreq Current speed of I²C bus

Description:
Returns the current speed of the I²C bus.
There is no way of changing the speed at runtime, but it can be set in the registry (see page
4) under
[HKLM\Drivers\BuiltIn\I2C1]

Software Documentation Native I2C – Software Interface for .NET | 22 of 32

4.8 enum NI2C_FLAGS

Values:

LASTBYTE_ACK Receive: Send ACK on last byte
 Transmit: Got ACK on last byte

DATA_NAK No ACK when sending data

DEVICE_NAK No ACK when talking to device

ARBITRATION_LOST Lost bus arbitration

TIMEOUT Timeout on I2C bus

Description:

Values given in chFlags entry of NI2C_MESSAGE_HEADER when looking at the result after

GetResult(). This can be used to determine transmission errors. See also page 11. There
may be more than one flag set at a time, then they are combined by logical OR.
If the transmission was aborted due to such an error, all remaining bytes of a message that

were not transferred are inverted after GetResult(). This allows to detect the exact
position within the message where the transmission failed.

As a special case you can set LASTBYTE_ACK in chFlags of receive messages before
scheduling the request to indicate that also the last byte received of these messages should
be acknowledged by the NetDCU. Default is not to acknowledge.

Software Documentation Native I2C – Software Interface for .NET | 23 of 32

4.9 enum NI2CAccess

Values:

QUERY Just open the device to check parameters

WRITE Open the device for write access

READ Open the device for read-only access

READ_WRITE Open the device for read/write access

Description:

These values may be given when creating the NI2CFile object (see page 15). Usually you

would like to use READ_WRITE for access.

Software Documentation Native I2C – Software Interface for .NET | 24 of 32

4.10 enum APIError

Values:

ERROR_FILE_NOT_FOUND Device not found

ERROR_ACCESS_DENIED Access to device denied

ERROR_INVALID_HANDLE Invalid handle

ERROR_NOT_READY Device not ready

ERROR_WRITE_FAULT Write fault

ERROR_DEV_NOT_EXIST Device does not exist

ERROR_INVALID_PARAMETER Bad parameters

ERROR_INVALID_NAME Invalid device name

Description:

The most common values that are reported as errors when calling the NI2CFile functions.
For additional values see the Win32 API.

Especially if the NI2C device driver is not installer, you’ll get ERROR_DEV_NOT_EXIST when

trying to create the NI2CFile object.

ERROR_INVALID_PARAMETERS is issued when the message header and data arrays are

not set-up correctly, for example when the wLen entries do not sum up to the size of the

data array or when the array sizes of GetResult() differ from the sizes given with

Schedule().

Software Documentation Native I2C – Software Interface for .NET | 25 of 32

4.11 struct NI2C_MSG_HEADER

Entries:

byte chDevAddr; Address of the target device,
 including send/receive flag

byte chFlags; Before transmission: Ack mode
 After transmission: Status

ushort wLen; Number of data bytes

Constructor:
NI2C_MSG_HEADER(byte chDevAddr, byte chFlags,

 ushort wLen)

Description:
Each message is made of a message header and data bytes. This is the data structure for
the message header.

The message header tells the driver to which target device to talk (chDevAddr bits 7..1), in

which mode (send or receive, i.e. chDevAddr bit 0), and how many bytes to transfer (wLen).

After the transmission, chFlags tells about the success or failure of the message transfer.
Usually several message headers are combined in an array to form a more complex
transmission request. All bytes to be transferred in the different messages of the request are

collected in a second array. Both arrays have to be given to Schedule() and

GetResult(). See also section starting at page 7 for more information of how to set-up the
arrays.
There is a constructor included with this struct to make creation of entries easier.

Software Documentation Native I2C – Software Interface for .NET | 26 of 32

5 The NI2CException class

The NI2CException class defines an exception used in combination with the NI2CFile

class. When an error happens within a function of NI2CFile, it throws this kind of

exception, so you can react to it in a try-catch statement.

The NI2CException extends ApplicationException by a read-only property int

Reason, showing the error code why the exception was thrown. This is usually the value re-

turned by the Win32 API via GetLastWin32Error(). A typical piece of code would look
like this.
try

{

 NI2CFile pNI2C = new NI2CFile("I2C1:", ...);

 ... // Use pNI2C

}

catch (NI2CException e)

{

 switch (e.Reason)

 {

 case NI2CFile.APIError.ERROR_DEV_NOT_EXIST:

 ... // Handle error

 case NI2CFile.APIError.ERROR_ACCESS_DENIED:

 ... // Handle error

 }

}

When examining the reason, NI2CFile.APIError (see page 24) may be of some help to
check for possible error sources.

Software Documentation Native I2C – Software Interface for .NET | 27 of 32

5.1 NI2CException() (Construction)

Signature 1:
NI2CException(string text, int reason)

Parameters:

text Error text

reason Error number

Description:

Store given error value as Reason. The error text is automatically completed with “: Error

code <reason>” where <reason> is the given error number.

Signature 2:
NI2CException(string text, int reason,

 Exception inner)

Parameters:

text Error text

reason Error number

inner Inner exception

Description:
Same as above, but with inner exception.

Software Documentation Native I2C – Software Interface for .NET | 28 of 32

Signature 3:
NI2CException(string text)

Parameters:

text Error text

Description:

Same as above, but automatically use the result of GetLastWin32Error() as error
number.

Signature 4:
NI2CException(string text, Exception inner)

Parameters:

text Error text

inner Inner exception

Description:
Same as above, with inner exception.

Software Documentation Native I2C – Software Interface for .NET | 29 of 32

Signature 5:
NI2CException(int reason)

Parameters:

reason Error number

Description:

Use given error number and "System error" as error text.

Signature 6:
NI2CException(int reason, Exception inner)

Parameters:
reason Error number

inner Inner exception

Description:
Same as above, but with inner exception.

Software Documentation Native I2C – Software Interface for .NET | 30 of 32

Signature 7:
NI2CException()

Description:

Use GetLastWin32Error() as error number and string "System error" as error text.

Signature 8:
NI2CException(Exception inner)

Parameters:

inner Inner exception

Description:
Same as above, but with inner exception.

Software Documentation Native I2C – Software Interface for .NET | 31 of 32

6 Appendix

Important Notice

The information in this publication has been carefully checked and is believed to be entirely
accurate at the time of publication. F&S Elektronik Systeme assumes no responsibility,
however, for possible errors or omissions, or for any consequences resulting from the use of
the information contained in this documentation.
F&S Elektronik Systeme reserves the right to make changes in its products or product
specifications or product documentation with the intent to improve function or design at any
time and without notice and is not required to update this documentation to reflect such
changes.
F&S Elektronik Systeme makes no warranty or guarantee regarding the suitability of its
products for any particular purpose, nor does F&S Elektronik Systeme assume any liability
arising out of the documentation or use of any product and specifically disclaims any and all
liability, including without limitation any consequential or incidental damages.
Specific testing of all parameters of each device is not necessarily performed unless
required by law or regulation.
Products are not designed, intended, or authorized for use as components in systems
intended for applications intended to support or sustain life, or for any other application in
which the failure of the product from F&S Elektronik Systeme could create a situation where
personal injury or death may occur. Should the Buyer purchase or use a F&S Elektronik
Systeme product for any such unintended or unauthorized application, the Buyer shall
indemnify and hold F&S Elektronik Systeme and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, expenses, and
reasonable attorney fees arising out of, either directly or indirectly, any claim of personal
injury or death that may be associated with such unintended or unauthorized use, even if
such claim alleges that F&S Elektronik Systeme was negligent regarding the design or
manufacture of said product.
Specifications are subject to change without notice.

Warranty Terms

Hardware Warranties

F&S guarantees hardware products against defects in workmanship and material for a
period of one (2) year from the date of shipment. Your sole remedy and F&S’s sole liability
shall be for F&S, at its sole discretion, to either repair or replace the defective hardware
product at no charge or to refund the purchase price. Shipment costs in both directions are
the responsibility of the customer. This warranty is void if the hardware product has been
altered or damaged by accident, misuse or abuse.

Software Warranties
Software is provided “AS IS”. F&S makes no warranties, either express or implied, with
regard to the software object code or software source code either or with respect to any third
party materials or intellectual property obtained from third parties. F&S makes no warranty
that the software is useable or fit for any particular purpose. This warranty replaces all other
warranties written or unwritten. F&S expressly disclaims any such warranties. In no case
shall F&S be liable for any consequential damages.

Software Documentation Native I2C – Software Interface for .NET | 32 of 32

Disclaimer of Warranty
THIS WARRANTY IS MADE IN PLACE OF ANY OTHER WARRANTY, WHETHER
EXPRESSED, OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A SPECIFIC
PURPOSE, NON-INFRINGEMENT OR THEIR EQUIVALENTS UNDER THE LAWS OF
ANY JURISDICTION, EXCEPT THE WARRANTY EXPRESSLY STATED HEREIN. THE
REMEDIES SET FORTH HEREIN SHALL BE THE SOLE AND EXCLUSIVE REMEDIES OF
ANY PURCHASER WITH RESPECT TO ANY DEFECTIVE PRODUCT.

Limitation on Liability

UNDER NO CIRCUMSTANCES SHALL F&S BE LIABLE FOR ANY LOSS, DAMAGE OR
EXPENSE SUFFERED OR INCURRED WITH RESPECT TO ANY DEFECTIVE PRODUCT.
IN NO EVENT SHALL F&S BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL
DAMAGES THAT YOU MAY SUFFER DIRECTLY OR INDIRECTLY FROM USE OF ANY
PRODUCT. BY ORDERING THE PRODUCT, THE CUSTOMER APPROVES THAT THE
F&S PRODUCT, HARDWARE AND SOFTWARE, WAS THOROUGHLY TESTED AND HAS
MET THE CUSTOMER'S REQUIREMETS AND SPECIFICATIONS

