
I
2
C Extension Kit Documentation

Windows Embedded Compact

Version 1.02
(2014-10-01)

© F&S Elektronik Systeme GmbH

Untere Waldplätze 23

D-70569 Stuttgart

Fon: +49(0)711-123722-0

Fax: +49(0)711 – 123722-99

History

Date V Platform A,M,R Chapter Description Au

25.05.09 1.0 A, M * First version of this documentation PM

21.05.10 1.1 A, M * A lot of adaptions and corrections. New board layout. MK

31.10.14 1.2 A, M * Add information and pictures for efus MW

V Version

A,M,R Added, Modified, Removed

Au Author

About this document

This documentation is about the hardware and the drivers of the I²C extension kit. It shows
how to connect the board, install the drivers and use them in own software applications. The
board and drivers are available for most of the boards from F&S for Windows Embedded
CE/Compact. The latest version of this document can be found at: http://www.fs-net.de

http://www.fs-net.de/

Device Driver Documentation Windows Embedded Compact FSVYBRID | 3 of 49

Table of Contents

1 Introduction 5

1.1 Known issues .. 5

2 Hardware 6

2.1 I²C extension board ... 6

2.1.1 I2C Slave Address of Devices ... 7

2.1.2 DIP switches .. 7

2.2 Pin Assignment ... 8

2.2.1 Extension Connector (J2) .. 8

2.2.2 I²C Connector (J1) ... 10

armStone family – feature connector ... 11

EFUS family .. 12

PicoCOM1 ... 14

PicoCOM2 / PicoCOM4 / PicoCOMA5 .. 15

Software Drivers 16

2.3 Concurrent Configuration .. 17

2.4 Configuration Requirements .. 17

3 The ext_IO Driver 19

3.1 Installation ... 19

3.2 Configuration ... 19

Debug ... 20

Port ... 20

DataDir .. 20

DataInit.. 20

IRQCfg .. 20

3.3 Usage in applications .. 20

3.4 ext_IO Reference .. 22

3.4.1 CreateFile() ... 22

3.4.2 WriteFile() .. 23

3.4.3 ReadFile() .. 23

3.4.4 CloseHandle().. 24

3.4.5 SetFilePointer().. 26

3.4.6 DeviceIoControl() ... 26

4 External Keyboard Driver 34

4.1 Configuration ... 34

Device Driver Documentation Windows Embedded Compact FSVYBRID | 4 of 49

4.2 Configuration Example .. 42

4.2.1 Hardware configuration ... 42

4.2.2 Registry configuration examples .. 43

4.2.3 The EKB Driver in Applications .. 43

5 Analogue Input 44

5.1 Configuration ... 44

5.2 Programming Example: ... 45

Appendix 46

Important Notice .. 46

Warranty Terms .. 47

Listings .. 48

Figures .. 48

Tables ... 48

Device Driver Documentation Windows Embedded Compact FSVYBRID | 5 of 49

1 Introduction

In some applications the number of interfaces and I/O pins natively available is not sufficient.
But by using a standard bus interface this connectivity can be extended very easily. For this
need F&S has designed an extension-kit that can by connected directly to the corresponding
starter kit base board. It uses the I²C bus interface that is available on all modules.

The extension board offers additional connectivity for

 I/O pins

 A/D inputs

 PWM signals

To control these interfaces, this extension kit includes a set of libraries and drivers to access

the devices very easily within your application. The driver interfaces comply with the

interfaces already available for native drivers. So for example accessing an I/O on the
extension board works similar to the mechanism you access a digital I/O (DIO) on your F&S
embedded board (armStone, efus, NetDCU, PicoMOD, PicoCOM).

Beside the extension adapter board, all schematics are also available, so that parts of these
interfaces can be integrated on your baseboard directly.

1.1 Known issues

 Interrupt support is missing in the ext_IO and the ext_keyboard driver.

 PWM driver not available yet.

 PicoCOM2: If there occur some data errors on the PicOCOM2 with the native I²C
driver, please try to using the software I²C driver that is available since kernel version
V1.13.

Device Driver Documentation Windows Embedded Compact FSVYBRID | 6 of 49

2 Hardware

2.1 I²C extension board

The extension board is designed to be used with any F&S board available. But as there are
still some basic differences, the board to use the adapter with, must be selected with the
solder bridges JP1-JP12. Additionally have to connect an external 5.0V supply voltage.

For providing the additional interfaces on the extension board, following micro-controllers are
used:

 I/O chip: PCA9555 from Philips

 A/D chip ADS7828 from Texas Instruments

 PWM chip:PCA9533 from Philips

Following figure shows the I²C extension board with the I²C connector (J1), the Extension
Connector (J2), the external power connector (J3) and the 2 dip switches (S1, S2).

Figure 1: I²C extension board

Device Driver Documentation Windows Embedded Compact FSVYBRID | 7 of 49

2.1.1 I2C Slave Address of Devices

Chip Function Slave Address

PCA9555 I/O chip

0 1 0 0 0 A1 A0 R/W

0x20 – 0x23

ADS7828 A/D chip

1 0 0 1 0 A1 A0 R/W

0x48 - 0x4B

PCA9533 PWM chip PCA9553/01

1 1 0 0 0 1 0 R/W

0x62

PCA9553/02

1 1 0 0 0 1 1 R/W

0x63

Table 1: I2C Slave Addresses

2.1.2 DIP switches

The dip switches (S1 and S2) are used to configure the I²C address of the used controller
chips. Additionally some board specific configuration must be arranged to get the board
working properly. E.g. the NetDCU boards are not equipped with pull-ups on the I²C bus
natively. The following table shows functions of the two dip switches:

Dip switch 1:

1 Address bit A1 of ADS7828 A/D chip.
ON: A1 = 0
OFF: A1 = 1

ADS7828 address:

1 0 0 1 0 A1 A0 R/W

2 Address bit A0 of ADS7828 A/D chip.
ON: A0 = 0
OFF: A0 = 1

3 Address bit A0 of PCA9555 I/O chip.
ON: A0 = 0
OFF: A0 = 1

PCA9555 address:

0 1 0 0 0 A1 A0 R/W

4 Address bit A1 of PCA9555 I/O chip.
ON: A1 = 0
OFF: A1 = 1

Device Driver Documentation Windows Embedded Compact FSVYBRID | 8 of 49

Dip switch 2:

1 I²C pull-up for SDA.
ON: Pull-up enabled
OFF: Pull-up disabled

2 I²C pull-up for SCL.
ON: Pull-up enabled
OFF: Pull-up disabled

3 VDD used for A/D reference voltage.

S2-3 S2-4 VREF

OFF ON VREF-EXT

OFF OFF invalid

ON ON invalid

ON OFF VDD 4 VREF-EXT used for A/D reference
voltage.

Table 2: DIP switch configuration

2.2 Pin Assignment

2.2.1 Extension Connector (J2)

The next table shows how the pins of the extension connector (J2)

Pin Function Pin Function

1 IO0 (port0-0) 2 IO1 (port0-1)

3 IO2 (port0-2) 4 IO3 (port0-3)

5 IO4 (port0-4) 6 IO5 (port0-5)

7 IO6 (port0-6) 8 IO7 (port0-7)

9 IO8 (port1-0) 10 IO9 (port1-1)

11 IO10 (port1-2) 12 IO11 (port1-3)

13 IO12 (port1-4) 14 IO13 (port1-5)

15 IO14 (port1-6) 16 IO15 (port1-7)

17 A/D channel 0 18 A/D channel 1

19 A/D channel 2 20 A/D channel 3

Device Driver Documentation Windows Embedded Compact FSVYBRID | 9 of 49

21 A/D channel 4 22 A/D channel 5

23 A/D channel 6 24 A/D channel 7

25 A/D COM 26 A/D VREF

27 PWM0 28 PWM1

29 PWM2 30 PWM3

31 V33 32 V33

33 GND 34 GND

Table 3: Extension Connector J2

Note:

The four push-buttons (S3-S7) are connected to the I/O pins 0..3. Be careful to configure

them as input before using the buttons.

By default all pins are configured as Input with a internal pull-up (100k) enabled.

Device Driver Documentation Windows Embedded Compact FSVYBRID | 10 of 49

2.2.2 I²C Connector (J1)

Depending of the solder bridges JP1-JP12 the pins available on the main connector are
routed on the extension board.

Before connecting the extension board please make sure that the jumpers are

configured correctly for your board.

Jumper Connector layout

JP1-JP5 armStone/
NetDCU/PicoMOD family

JP6-JP8 PicoCOM1

JP9-JP12 PicoCOM2/ efus

Note:

It is not possible to combine several layouts configurations at the same time.

Following tables shows which pins of connector are used on the extension board according
to the current corresponding configuration.

Device Driver Documentation Windows Embedded Compact FSVYBRID | 11 of 49

armStone family – feature connector
25 23 21 19 17 15 13 11 9 7 5 3 1

--- --- --- ---
I²C

SDA
--- --- GND --- --- --- --- ---

26 24 22 20 18 16 14 12 10 8 6 4 2

--- --- --- --- IRQ
I²C

SCL
--- --- --- --- --- --- ---

Device Driver Documentation Windows Embedded Compact FSVYBRID | 12 of 49

EFUS family
1 3 5 7 9 11 13 15 17 19 21 23 25

--- --- --- ---
I²C

DAT
 --- --- --- --- --- --- ---

2 4 6 8 10 12 14 16 18 20 22 24 26

--- --- --- ---
I²C

SCL
I²C
IRQ

--- --- GND --- --- --- ---

Note:

Pin 1 of the I²C-Extension Board has to be connected to Pin 33 on the efus-SINTF-Feature
connector (J22).

Device Driver Documentation Windows Embedded Compact FSVYBRID | 13 of 49

NetDCU / PicoMOD family – connector J5

1 3 5 7 9 11 13 15 17 19 21 23 25

--- --- --- --- IRQ
I²C

SCL
--- --- --- --- --- --- ---

2 4 6 8 10 12 14 16 18 20 22 24 26

--- --- --- ---
I²C

SDA
--- --- GND --- --- --- --- ---

Device Driver Documentation Windows Embedded Compact FSVYBRID | 14 of 49

PicoCOM1
1 3 5 7 9 11 13 15 17 19 21 23 25

--- --- --- --- IRQ --- --- --- --- ---
I²C

SDA
--- ---

2 4 6 8 10 12 14 16 18 20 22 24 26

--- --- --- --- --- --- --- --- --- ---
I²C

SCL
--- ---

Device Driver Documentation Windows Embedded Compact FSVYBRID | 15 of 49

PicoCOM2 / PicoCOM4 / PicoCOMA5
1 3 5 7 9 11 13 15 17 19 21 23 25

--- --- --- ---
I²C

SDA
--- --- --- --- --- --- --- ---

2 4 6 8 10 12 14 16 18 20 22 24 26

--- --- --- ---
I²C

SCL
IRQ --- --- GND --- --- --- ---

Device Driver Documentation Windows Embedded Compact FSVYBRID | 16 of 49

Software Drivers

There are different possibilities to work with the extension board. First of all you can access
the board by the I2C driver which is already installed on your F&S board. To inspect the I2C
devices at the extension board you can use the tool FS_I2CSCAN.EXE.

Figure 2: Tool FS_I2CSCAN.EXE

The extension board driver offers the same software interface as the drivers available for
your single board computer, so you don't have to rewrite your application if you want to use

the external pins. All the functions of the drivers have been transmitted. The drivers only use
the platform specific DIO driver and (N)I2C driver of your module to access the extension
board. This offers the possibility to run the same driver on nearly every board of the F&S
board family.

Device Driver Documentation Windows Embedded Compact FSVYBRID | 17 of 49

2.3 Concurrent Configuration

The exti2cboard.dll library handles access to the extension board and also coordinates

concurrent operations. Hence this enables simultaneously usage of the available interfaces.
For example it is possible to use some I/O-pins with the ext_IO driver and use some other
pins for a matrix keyboard (handled by ext_keybd driver) at the same time.

2.4 Configuration Requirements

Before you start installing the drivers you have to do a few preparations:

1 Plug the extension board with the right connector to your F&S embedded board.

2 If you use NetDCU you have to turn on the I²C pull-up resistors on the dip switch (see
table 1).

Figure 3: Connection between the drivers and the board

Device Driver Documentation Windows Embedded Compact FSVYBRID | 18 of 49

3 Connect the external power supply (5V) and GND to the power connector on the top
of the board.

4 The (N)I2C and the DIGITALIO (DIO) driver must be installed and enabled on your
board.

Device Driver Documentation Windows Embedded Compact FSVYBRID | 19 of 49

3 The ext_IO Driver

3.1 Installation

The libraries ext_io.dll and exti2cboard.dll have to be stored in flash memory into

directory \FFSDISK if it is not pre-loaded in the kernel already.

Note:

The interrupt functionality is not available yet.

3.2 Configuration

Additionally the ext_IO driver requires setting some registry values. Installation of the ext_IO
driver takes place in the registry under

[HKLM\Drivers\BuiltIn\EIO1]

Entry Type Value Description

Dll String ext_io.dll Driver DLL

FriendlyName String I2C IO driver Description

Prefix String EIO For EIO<index>:

Index DWORD 1 For EIO1:

Order DWORD 301 Load sequence

I2cDevAddr DWORD 0x46 I2C Address of the I/O chip
(PCA9555)

I2CDevName String I2C1: I2C device used to access the
extension board.

Debug DWORD 0 Debug verbosity

Port DWORD 0 or 1

DataDir HEX 00,00 Data Direction.
0 = The corresponding pin is an input.
1 = The corresponding pin is an
output.

One bit for each I/O pin.

DataInit HEX 00,00 Default value of the output pin after
driver initialization.

IRQCfg0 HEX 00,00 Interrupt configuration register 0.

IRQCfg1 HEX 00,00 Interrupt configuration register 1.

IRQCfg2 HEX 00,00 Interrupt configuration register 2.

Table 4: ext_IO Registry Values

Device Driver Documentation Windows Embedded Compact FSVYBRID | 20 of 49

Most of the values will get meaningful defaults if omitted, only those values highlighted in
blue/grey and italics above in the first few rows really have to be given.

Debug
If the Debug entry is set to a value different to zero, the driver will output additional

information on the debug port. Each bit enables a different category of output. This
information is usually not required and only necessary when looking for errors in the driver.
Keep this value at zero to have the best possible performance.

Port

Set the default value of port. If you use WriteFile() or ReadFile() you will write or read

 from this port by default. You may adjust this port with the SetFilePointer() function.

DataDir
Every bit stands for one pin. The first hex byte corresponds to port0 (IO0 to IO7) the second
hex byte defines configuration for port1 (IO8 to IO15).

DataInit

Default value of the output pin after driver initialization.

IRQCfg
You can set the interrupt configuration for every pin

IRQCfg2 IRQCfg1 IRQCfg0 Function

0 0 0 Interrupt Disabled

0 0 1 Rising Edge Enabled

0 1 0 Falling Edge Enabled

0 1 1 Rising and Falling Edge Enabled

1 0 0 Interrupts Disabled

1 0 1 High Level Enabled

1 1 0 Low Level Enabled

Table 5: Interrupt Configuration

3.3 Usage in applications

With the ext_IO driver you can write and read the 2 ports on the I²C extension board.

Device Driver Documentation Windows Embedded Compact FSVYBRID | 21 of 49

Note:

As the driver interface of the ext_IO driver is identical to the “regular” DIO driver interface,
you may still use the dio_sdk.h header file that is included in the SDK of your board.

Therefore the samples available for the DIO driver can be used for the ext_IO driver, too.
Just make sure that the according digital I/O interface will be opened (EIO1: instead of

DIO1:)

Device Driver Documentation Windows Embedded Compact FSVYBRID | 22 of 49

3.4 ext_IO Reference

3.4.1 CreateFile()

Signature:

HANDLE CreateFile(

 LPCTSTR lpFileName, DWORD dwAccess, DWORD dwShareMode,

 LPSECURITY_ATTRIBUTES lpSecurity, DWORD dwCreation,

 DWORD dwFlags, HANDLE hTemplate

);

Parameters:

lpFileName Device file name, usually “EIO1:”

dwAccess Device access (see below)

dwShareMode File share mode (see below)

lpSecurity Ignored, set to NULL

dwCreation Set to OPEN_EXISTING

dwFlags Set to FILE_ATTRIBUTE_NORMAL

hTemplate Ignored, set to 0

Device access dwAccess:

0 Device query mode

GENERIC_READ Open device file read-only (receive)

GENERIC_WRITE Open device file write-only (send)

GENERIC_READ | GENERIC_WRITE

Open device file in read-write mode

File share mode dwShareMode:

FILE_SHARE_READ Subsequent open operations succeed only if read access

FILE_SHARE_WRITE Subsequent open operations succeed only if write access

Return:

INVALID_HANDLE_VALUE Failure, see GetLastError() for details

Otherwise File handle

Description:

Opens the EIOx: device file for access. This is required for all other functions using this

ext_IO driver.

If the file handle is not required any more, you have to call function CloseHandle().

Device Driver Documentation Windows Embedded Compact FSVYBRID | 23 of 49

3.4.2 WriteFile()

Signature:

BOOL WriteFile(

 HANDLE hFileHandle, LPCVOID lpBuffer, DWORD dwLen,

 LPDWORD dwActuallySent, LPOVERLAPPED lpOverlapped

);

Parameters:

hFileHandle Handle to device file

lpBuffer Pointer to the buffer with data to send

dwLen Number of bytes to send

dwActuallySent Pointer to a DWORD where the number of actually sent

bytes is returned

lpOverlapped Ignored, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:

Sends the dwLen bytes that are stored at lpBuffer to the actual port of your ext_IO

device. It is possible to choose port0 and dwLen=2, than the first byte will be sent to port0

and the second to port1. It's not possible to start with port1 and go on to port0.

Example:

Set pin 0 and 2 and clear the rest on actual port

DWORD dwBytesWrite = 1;

BYTE data = 5;

WriteFile(hEIO, &data, dwBytesWrite, &dwBytesWrite, NULL);

if(dwBytesWrite != 1)

{

 //ERROR

}

Listing 1: Example WriteFile()

3.4.3 ReadFile()

Signature:

BOOL ReadFile(

 HANDLE hFileHandle, LPCVOID lpBuffer, DWORD dwLen,

Device Driver Documentation Windows Embedded Compact FSVYBRID | 24 of 49

 LPDWORD dwRead, LPOVERLAPPED lpOverlapped

);

Parameters:

hFileHandle Handle to device file

lpBuffer Pointer to the buffer where the received data is stored

dwLen Number of bytes to receive

dwRead Pointer to a DWORD where the number of actually received

bytes is returned

lpOverlapped Ignored, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:

Receives dwLen bytes from the ext_IO device and stores the data at lpBuffer. It is

possible to choose port0 and dwLen=2, than the first byte will be read from port0 and the

second from port1. It's not possible to start with port1 and go on to port0.

Example:

Read actual port.

DWORD dwBytesRead = 1;

BYTE data;

ReadFile(hDevice, data, dwBytesRead, &dwBytesRead, NULL);

if(dwBytesRead != 1)

{

 //ERROR

}

Listing 2: Example ReadFile()

3.4.4 CloseHandle()

Signature:

BOOL CloseHandle(HANDLE hFileHandle);

Parameters:

hFileHandle Handle to device file

Device Driver Documentation Windows Embedded Compact FSVYBRID | 25 of 49

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:

Closes the device file that was opened with CreateFile().

Device Driver Documentation Windows Embedded Compact FSVYBRID | 26 of 49

3.4.5 SetFilePointer()

Signature:

DWORD SetFilePointer(HANDLE hFileHandle, long lDistance,

 NULL, DWORD ControlCode);

Parameters:

hFileHandle Handle to device file

lDistance the new portnumber

 irrelevant

ControlCode Control code specifying the device specific function to

 execute

Description:

With this function you can set the actual port. You may need this when you use
WriteFile() or ReadFile().

ControlCode options:

FILE_BEGIN this option can choose the new port with lDistance

FILE_CURRENT returns the actual port, lDistance has to be 0

FILE_END returns the number of available ports, lDistance has to be 0

3.4.6 DeviceIoControl()

Signature:

int DeviceIoControl(

 HANDLE hDevice, DWORD dwIoControlCode,

 LPVOID lpInBuffer, DWORD dwInBufferSize,

 LPVOID lpOutBuffer, DWORD dwOutBufferSize,

 LPDWORD lpReturned, LPOVERLAPPED lpOverlapped

);

Parameters:

hDevice Handle to already open device file

dwIoControlCode Control code specifying the device specific function to

execute

lpInBuffer Pointer to the data going into the function (IN data)

Device Driver Documentation Windows Embedded Compact FSVYBRID | 27 of 49

dwInBufferSize Size of the IN data (in bytes)

lpOutBuffer Pointer to a buffer where data coming out of the function

can be stored (OUT data)

dwOutBufferSize Number of bytes available for the OUT data

lpReturned Number of bytes actually written to the OUT data buffer

lpOverlapped Unused, set to NULL

Description:

Executes a device specific function. The type of function is given by a control code in
parameter dwIoControlCode. Each function has a specific set of parameters. Usually

there is some data going into the function (IN data) and some data is returned out of the

function (OUT data).

The following table lists all control codes recognised by the ext_IO driver.

Control Code Function

IOCTL_DIO_SET_PIN Set single pin, independent from actual port

IOCTL_DIO_CLR_PIN Clear single pin, independent from actual port

IOCTL_DIO_GET_PIN Read single pin, independent from actual port

IOCTL_DIO_REINIT Reread current settings from registry and a configure
the pins accordingly.

IOCTL_DIO_REQUEST_IRQ Initialize an interrupt input pin

IOCTL_DIO_RELEASE_IRQ De-Initialze an interrupt input pin

IOCTL_DIO_WAIT_IRQ Function returns when interrupt is triggered

IOCTL_DIO_DONE_IRQ Interrupt resets automatically so this does nothing

Table 6: IOCTL command codes

Device Driver Documentation Windows Embedded Compact FSVYBRID | 28 of 49

IO-Controls

IOCTL_DIO_REQUEST_IRQ

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_DIO_REQUEST_IRQ

lpInBuffer Pointer to DWORD where the pin is defined

dwInBufferSize sizeof(DWORD)

lpOutBuffer Unused, set to NULL

dwOutBufferSize Unused, set to NULL

lpReturned pointer to return value - DWORD

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:

With this command you can request an interrupt for a specific pin. Once you requested an
interrupt you can wait for it with the IOCTL_DIO_WAIT_IRQ function.

Device Driver Documentation Windows Embedded Compact FSVYBRID | 29 of 49

IOCTL_DIO_WAIT_IRQ

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_DIO_REQUEST_SYSINTR

lpInBuffer Pointer to structure WAITIRQ – defined in
dio_sdk.h

dwInBufferSize sizeof(WAITIRQ)

lpOutBuffer Unused, set to NULL

dwOutBufferSize Unused, set to NULL

lpReturned pointer to return value - DWORD

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:

This function behaves like WaitForSingleObject(). You can set the pin to wait for and

the timeout in the WAITIRQ structure.

Device Driver Documentation Windows Embedded Compact FSVYBRID | 30 of 49

IOCTL_DIO_RELEASE_IRQ

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_DIO_REQUEST_SYSINTR

lpInBuffer Pointer to DWORD where the pin is defined

dwInBufferSize sizeof(DWORD)

lpOutBuffer Unused, set to NULL

dwOutBufferSize Unused, set to NULL

lpReturned pointer to return value - DWORD

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:

With this command you can release an interrupt that you requested before.

Device Driver Documentation Windows Embedded Compact FSVYBRID | 31 of 49

IOCTL_DIO_SET_PIN

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_DIO_REQUEST_SYSINTR

lpInBuffer Pointer to BYTE where the pin is defined

dwInBufferSize sizeof(BYTE)

lpOutBuffer Unused, set to NULL

dwOutBufferSize Unused, set to NULL

lpReturned pointer to return value - DWORD

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:

With this command you can set a single pin. The pin will be set independent from the actual
selected port. You have to set the number of the pin, not a mask of pins.

Example:

Set pin 0;

BYTE pin = 0;

if(!DeviceIoControl(hDIO,IOCTL_DIO_SET_PIN, &pin, sizeof(BYTE),

 NULL, 0, &ret, NULL))

{

 //ERROR

}

Listing 3: Example set pin

Device Driver Documentation Windows Embedded Compact FSVYBRID | 32 of 49

IOCTL_DIO_CLR_PIN

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_DIO_REQUEST_SYSINTR

lpInBuffer Pointer to BYTE where the pin is defined

dwInBufferSize sizeof(BYTE)

lpOutBuffer Unused, set to NULL

dwOutBufferSize Unused, set to NULL

lpReturned pointer to return value - DWORD

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:

With this command you can clear a single pin. The pin will be set independent from the
actual selected port. You have to set the number of the pin, not a mask of pins.

Example:

Clear pin 7;

BYTE pin = 7;

if(!DeviceIoControl(hDIO,IOCTL_DIO_CLR_PIN, &pin, sizeof(BYTE),

 NULL, 0, &ret, NULL))

{

 //ERROR

}

Listing 4: Example clear pin

Device Driver Documentation Windows Embedded Compact FSVYBRID | 33 of 49

IOCTL_DIO_GET_PIN

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_DIO_REQUEST_SYSINTR

lpInBuffer Pointer to BYTE where the pin is defined

dwInBufferSize sizeof(BYTE)

lpOutBuffer Pointer to status of the pin - BYTE

dwOutBufferSize sizeof(BYTE)

lpReturned pointer to return value - DWORD

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:

With this command you can clear a single pin. The pin will be set independent from the
actual selected port. You have to set the number of the pin, not a mask of pins.

Example:

Get pin 10;

BYTE out;

BYTE pin = 10;

if(!DeviceIoControl(hDIO,IOCTL_DIO_GET_PIN, &pin, sizeof(BYTE),

 &out, sizeof(BYTE), &ret, NULL))

{

 //ERROR

}

printf("pin 10: 0x%x\r\n", out);

Listing 5: Example get pin

Device Driver Documentation Windows Embedded Compact FSVYBRID | 34 of 49

4 External Keyboard Driver

The organization of the matrix keyboard is very flexible. You can use a maximum of 8 (rows)
* 8 (columns) or a maximum 16 (static keys). So you can connect up to 64 keys. You can
choose if you want the driver to poll the keyboard every 20 ms or use an interrupt, this
requires that you have the interrupt pin from the extension board connected.

In the case a key is pressed, the driver reads the scan code and saves the value. After
additional 20 ms it checks the scan code. If the scan code is unchanged the scan code will
be transformed with the information stored in the mapping table in a PS2 keyboard scan
code. The routing of this keyboard code is the same as the one from a PS2 keyboard. The
mapping table for converting a scan code in a PS2 keyboard code is stored in the registry.

The library ext_keyboard.dll and exti2cboard.dll has to be stored in flash

memory into the \FFSDISK directory, if it is not already pre-loaded in the kernel.

Note:

Interrupt mode is not supported currently.

4.1 Configuration

The settings which influence the driver are stored under key:

[HKLM\HARDWARE\DEVICEMAP\KEYBD\MATRIX]

Entry Type Value Description

I2CDevAddr DWORD 0x46 Address of the I/O chip (PCA9555).

I2CDevName String I2C1: I2C device used to access the extension board.

Type DWORD 17
See Table 8: Matrix Keyboard: Type registry value

.

RowReverse DWORD 0 Reverse all bits of the row. Bit 0 to Bit 7, Bit 1 to
Bit6.

ColReverse DWORD 0 Reverse all bits of the column. Bit 0 to Bit 7, Bit 1
to Bit6.

ChangeRowCol DWORD 0 Exchange the scan-value of row and column.

AutoKeyUp DWORD 0 If a matrix key is pressed and the previous key is
not released, this value sends the KEYUP
message to the system.

OutputScanCode DWORD 0 Set this value to 1 to output the scan-code of the
currently pressed key as a debug message on the
serial debug line.

ExtIrqPin DWORD 0 I/O pin which is used for the interrupt on the J5
port

UseIrqPin DWORD 0 If activated interrupt will be used, else the
keyboard polls every 20 ms

Note: Irq mode is not supported currently.

Table 7: Matrix Keyboard: Registry settings

Device Driver Documentation Windows Embedded Compact FSVYBRID | 35 of 49

Type Function

0 Matrix keyboard driver OFF

1
Matrix keyboard max. 8x8+4, 8 rows, 8 cols, 4 static keys,
single key detection

3
Matrix keyboard max. 8x8, 8 rows, 8 cols, 0 static keys,
single key detection

17
Matrix keyboard max. 8x8+4, 8 rows, 8 cols, 4 static keys,
multiple key detection

19
Matrix keyboard max. 8x8, 8 rows, 8 cols, 0 static keys,
multiple key detection

Table 8: Matrix Keyboard: Type registry value

The organization of the columns is done under the following registry key:

[HKLM\HARDWARE\DEVICEMAP\KEYBD\MATRIX\COLS]

Key Value Comment

IOCol0 DWORD Number of IO you want use for column 0.

…

IOColn DWORD Number of IO you want use for last column.

Table 9: Matrix Keyboard: Cols registry values

Note:

Please do not add other registry values to this key, because amount of values is directly
used for amount of rows.

The organization of the rows is done under the following registry key:

[HKLM\HARDWARE\DEVICEMAP\KEYBD\MATRIX\ROWS]

Key Value Comment

IORow0 DWORD Number of IO you want use for row 0.

…

IORown DWORD Number of IO you want use for last row.

Table 10: Matrix Keyboard: Rows registry values

Note:

Please do not add other registry values to this key, because amount of values is directly
used for amount of rows.

Device Driver Documentation Windows Embedded Compact FSVYBRID | 36 of 49

The organization of the static keys is done under the following registry key:

[HKLM\HARDWARE\DEVICEMAP\KEYBD\MATRIX\STATIC]

Key Value Comment

IOStaticKey0 DWORD Number of IO you want use for static key 0.

StaticKey0 DWORD PS2 code for static key 0.
See Table 13: Matrix Keyboard: PS2 Scan Codes

…

IOStaticKeyn DWORD Number of IO you want use for last static key.

StaticKeyn DWORD PS2 code for last static key.
See Table 13: Matrix Keyboard: PS2 Scan Codes

Table 11: Matrix Keyboard: Static registry values

You have to add two registry values for each static key. Please do not add other registry
values to this key, because amount of values is directly used for amount of static keys. It’s
also possible to use this driver without matrix keys. E.g. if you have only a small number of
keys you can configure the driver like shown in Example2. This could be also a good
alternative to using digital IO driver. Especially with .NET framework because you get
changes to the IO in the way of key strokes and have not poll to driver.

Device Driver Documentation Windows Embedded Compact FSVYBRID | 37 of 49

Mapping of matrix keys to PS2 values are stored under

[HKLM\HARDWARE\DEVICEMAP\KEYBD\MATRIX\MAP]

Under \MAP you can make settings in the following form:

Key Value

"1" Dword:2

"2" Dword:3

"3" Dword:4

"4" Dword:5

Table 12: Matrix Keyboard: Map registry value

The value under Key (string!) is the scan code from the matrix keyboard. The range of this
value is from 1 to 127 and must be given in decimal format. The value must be in
hexadecimal form. In the above example you send the PS2-Code 2 if you press the matrix
key 1.

PS2 Scan Codes:

V-KEY PS2-Scan-Code

0 // Scan Code 0x0

VK_ESCAPE // Scan Code 0x1

'1' // Scan Code 0x2

'2' // Scan Code 0x3

'3' // Scan Code 0x4

'4' // Scan Code 0x5

'5' // Scan Code 0x6

'6' // Scan Code 0x7

'7' // Scan Code 0x8

'8' // Scan Code 0x9

'9' // Scan Code 0xA

'0' // Scan Code 0xB

VK_HYPHEN // Scan Code 0xC

VK_EQUAL // Scan Code 0xD

VK_BACK // Scan Code 0xE

VK_TAB // Scan Code 0xF

'Q' // Scan Code 0x10

'W' // Scan Code 0x11

'E' // Scan Code 0x12

'R' // Scan Code 0x13

Device Driver Documentation Windows Embedded Compact FSVYBRID | 38 of 49

V-KEY PS2-Scan-Code

'T' // Scan Code 0x14

'Y' // Scan Code 0x15

'U' // Scan Code 0x16

'I' // Scan Code 0x17

'O' // Scan Code 0x18

'P' // Scan Code 0x19

VK_LBRACKET // Scan Code 0x1A

VK_RBRACKET // Scan Code 0x1B

VK_RETURN // Scan Code 0x1C

VK_LCONTROL // Scan Code 0x1D

'A' // Scan Code 0x1E

'S' // Scan Code 0x1F

'D' // Scan Code 0x20

'F' // Scan Code 0x21

'G' // Scan Code 0x22

'H' // Scan Code 0x23

'J' // Scan Code 0x24

'K' // Scan Code 0x25

'L' // Scan Code 0x26

VK_SEMICOLON // Scan Code 0x27

VK_APOSTROP
H

// Scan Code 0x28

VK_BACKQUOT
E

// Scan Code 0x29

VK_LSHIFT // Scan Code 0x2A

VK_BACKSLASH // Scan Code 0x2B

'Z' // Scan Code 0x2C

'X' // Scan Code 0x2D

'C' // Scan Code 0x2E

'V' // Scan Code 0x2F

'B' // Scan Code 0x30

'N' // Scan Code 0x31

'M' // Scan Code 0x32

VK_COMMA // Scan Code 0x33

VK_PERIOD // Scan Code 0x34

VK_SLASH // Scan Code 0x35

VK_RSHIFT // Scan Code 0x36

VK_MULTIPLY // Scan Code 0x37

Device Driver Documentation Windows Embedded Compact FSVYBRID | 39 of 49

V-KEY PS2-Scan-Code

VK_LMENU // Scan Code 0x38

VK_SPACE // Scan Code 0x39

VK_CAPITAL // Scan Code 0x3A

VK_F1 // Scan Code 0x3B

VK_F2 // Scan Code 0x3C

VK_F3 // Scan Code 0x3D

VK_F4 // Scan Code 0x3E

VK_F5 // Scan Code 0x3F

VK_F6 // Scan Code 0x40

VK_F7 // Scan Code 0x41

VK_F8 // Scan Code 0x42

VK_F9 // Scan Code 0x43

VK_F10 // Scan Code 0x44

VK_NUMLOCK // Scan Code 0x45

VK_SCROLL // Scan Code 0x46

VK_NUMPAD7 // Scan Code 0x47

VK_NUMPAD8 // Scan Code 0x48

VK_NUMPAD9 // Scan Code 0x49

VK_SUBTRACT // Scan Code 0x4A

VK_NUMPAD4 // Scan Code 0x4B

VK_NUMPAD5 // Scan Code 0x4C

VK_NUMPAD6 // Scan Code 0x4D

VK_ADD // Scan Code 0x4E

VK_NUMPAD1 // Scan Code 0x4F

VK_NUMPAD2 // Scan Code 0x50

VK_NUMPAD3 // Scan Code 0x51

VK_NUMPAD0 // Scan Code 0x52

VK_DECIMAL // Scan Code 0x53

VK_SNAPSHOT // Scan Code 0x54

VK_F11 // Scan Code 0x57

VK_F12 // Scan Code 0x58

VK_LWIN // Scan Code 0x5B

VK_RWIN // Scan Code 0x5C

VK_APPS // Scan Code 0x5D

VK_HELP // Scan Code 0x63

VK_F13 // Scan Code 0x64

VK_F14 // Scan Code 0x65

VK_F15 // Scan Code 0x66

Device Driver Documentation Windows Embedded Compact FSVYBRID | 40 of 49

V-KEY PS2-Scan-Code

VK_F16 // Scan Code 0x67

VK_F17 // Scan Code 0x68

VK_F18 // Scan Code 0x69

VK_F19 // Scan Code 0x6A

VK_F20 // Scan Code 0x6B

VK_F21 // Scan Code 0x6C

VK_F22 // Scan Code 0x6D

VK_F23 // Scan Code 0x6E

VK_F24 // Scan Code 0x76

VK_DIVIDE // Scan Code 0xE035

VK_SNAPSHOT // Scan Code 0xE037

VK_RMENU // Scan Code 0xE038

VK_HOME // Scan Code 0xE047

VK_UP // Scan Code 0xE048

VK_PRIOR // Scan Code 0xE049

VK_LEFT // Scan Code 0xE04B

VK_RIGHT // Scan Code 0xE04D

VK_END // Scan Code 0xE04F

VK_DOWN // Scan Code 0xE050

VK_NEXT // Scan Code 0xE051

VK_INSERT // Scan Code 0xE052

VK_DELETE // Scan Code 0xE053

VK_LWIN // Scan Code 0xE05B

VK_RWIN // Scan Code 0xE05C

VK_APPS // Scan Code 0xE05D

Table 13: Matrix Keyboard: PS2 Scan Codes

Scan codes matrix 8x8:

 C0 C1 C2 C3

R0 0x01 0x02 0x03 0x04

R1 0x11 0x12 0x13 0x14

R2 0x21 0x22 0x23 0x24

R3 0x31 0x32 0x33 0x34

R4 0x41 0x42 0x43 0x44

R5 0x51 0x52 0x53 0x54

R6 0x61 0x62 0x63 0x64

R7 0x71 0x72 0x73 0x74

Device Driver Documentation Windows Embedded Compact FSVYBRID | 41 of 49

Table 14: Matrix Keyboard: Scan Codes matrix 8x8 C0 – C3

 C4 C5 C6 C7

R0 0x05 0x06 0x07 0x08

R1 0x15 0x16 0x17 0x18

R2 0x25 0x26 0x27 0x28

R3 0x35 0x36 0x37 0x38

R4 0x45 0x46 0x47 0x48

R5 0x55 0x56 0x57 0x58

R6 0x65 0x66 0x67 0x68

R7 0x75 0x76 0x77 0x78

Table 15: Matrix Keyboard: Scan Codes matrix 8x8 C4 – C7

Device Driver Documentation Windows Embedded Compact FSVYBRID | 42 of 49

4.2 Configuration Example

4.2.1 Hardware configuration

The following schematic show the connection of a keyboard with a 8x8 matrix and four static
keys.

Note:

Please note that this is a sample schematic only. It is desigend for the NetDCU Starterkit.
Therefore the pin layout of the connector may not be usable on the extension board.

Figure 4: Sample schematic for a matrix keyboard

Figure 3: Sample schematic for a matrix keyboard.

Device Driver Documentation Windows Embedded Compact FSVYBRID | 43 of 49

4.2.2 Registry configuration examples

A. Create matrix keyboard with matrix 2x2 and no static keys.

[HKLM\hardware\devicemap\keybd\matrix]

 "Type"=dword:10 ; multi no static keys

 "OutputSCanCode"=dword:1

 "Debug"=dword:0

[HKLM\hardware\devicemap\keybd\matrix\Cols]

 "IOCol0"=dword:4 ; IO4 – J2:pin 5

 "IOCol1"=dword:5 ; IO5 – J2:pin 6

[HKLM\hardware\devicemap\keybd\matrix\Rows]

 "IORow0"=dword:6 ; IO6 – J2:pin 7

 "IORow1"=dword:3 ; IO7 – J2:pin 8

[HKLM\hardware\devicemap\keybd\matrix\map]

 "1"=dword:1E ; r0,c0 -> ‘A’

 "2"=dword:30 ; r0,c1 -> ‘B’

 "17"=dword:2E ; r1,c0 -> ‘C’

 "18"=dword:20 ; r1,c1 -> ‘D’

Listing 6: Matrix keyboard configuration example A.

B. Create keyboard with four static keys and no matrix.

[HKLM\hardware\devicemap\keybd\matrix]

 "Type"=dword:11; multi with static keys

 "OutputSCanCode"=dword:1

 "Debug"=dword:0

[HKLM\hardware\devicemap\keybd\matrix\Static]

 "IOStaticKey0"=dword:0 ; IO0 – S3

 "IOStaticKey1"=dword:1 ; IO1 – S4

 "IOStaticKey2"=dword:2 ; IO2 – S5

 "IOStaticKey3"=dword:3 ; IO3 – S6

 "StaticKey0"=dword:E04B ; VKEY_LEFT

 "StaticKey1"=dword:E048 ; VKEY_UP

 "StaticKey2"=dword:E04D ; VKEY_RIGHT

 "StaticKey3"=dword:E050 ; VKEY_DOWN

; remove this key or delete all values

[HKLM\hardware\devicemap\keybd\matrix\Cols]

; remove this key or delete all values

[HKLM\hardware\devicemap\keybd\matrix\Rows]

; remove this key or delete all values

[HKLM\hardware\devicemap\keybd\matrix\map]

Listing 7: Matrix keyboard configuration example B.

4.2.3 The EKB Driver in Applications

The external keyboard driver behaves like a normal keyboard driver. You can assign a ps2
code for each key of your matrix keyboard. So you can use programs that do normal
keyboard requests.

Device Driver Documentation Windows Embedded Compact FSVYBRID | 44 of 49

5 Analogue Input

The extension board features 8 analogue inputs, each having a resolution of 12 bit.

This eight inputs can be read with this driver. The selection of the channel can be done
statically within registry or dynamically with the SetFilePointer() function.

5.1 Configuration

Configuration of the driver is done by setting some registry values under the following
registry key:

[HKLM\Drivers\BuiltIn\ANALOGIN]

Required settings:

Entry Type Value Description

Dll String ext_ain.dll Driver DLL

FriendlyName String Extension

analog in

driver

Description

Prefix String AIN For AIN<index>:

Index DWORD 1 For AIN1:

Order DWORD 301 Load sequence.

I2CDevAddr DWORD 0x96 I2C address for the analogue input
controller (ADS7828).

I2CDevName String I2C1: I2C device used to access the
extension board.

Debug DWORD 0 Debug verbosity

Channel DWORD 0-7 Default analogue channel

Table 16: Analogue Input: Registry

Device Driver Documentation Windows Embedded Compact FSVYBRID | 45 of 49

5.2 Programming Example:

C. Open one analogue channel:

HANDLE hAIN;

hAIN = CreateFile(_T("AIN1:"),GENERIC_READ, 0, NULL, OPEN_EXISTING

 ,FILE_ATTRIBUTE_NORMAL, NULL);

if(hAIN == INVALID_HANDLE_VALUE)

{

 ERRORMSG(1,L"Can not open AIN1. LastError = 0x%x\r\n",GetLastError()));

 return(FALSE);

}

Listing 8: Analogue Input: Open channel

D. Read data from previously opened channel:

unsigned short data;

DWORD dwSamples = 1;

ReadFile(hAIN, data, dwSamples, &dwSamples, NULL);

if(dwSamples != 1)

{

 ERRORMSG(1,L"Can not read from AIN1. LE = 0x%x\r\n",GetLastError()));

}

Listing 9: Analogue Input: reading samples

E. Select another channel without changing registry:

int nChannel = 0x0;

SetFilePointer(hAIN, nChannel, 0, FILE_BEGIN);

Listing 10: Analogue Input: changing channel from application

F. Closing the analogue channel:

CloseHandle(hAIN);

Listing 11: Analogue Input: closing a channel

Device Driver Documentation Windows Embedded Compact FSVYBRID | 46 of 49

Appendix

Important Notice

The information in this publication has been carefully checked and is believed to be entirely
accurate at the time of publication. F&S Elektronik Systeme assumes no responsibility,
however, for possible errors or omissions, or for any consequences resulting from the use of
the information contained in this documentation.

F&S Elektronik Systeme reserves the right to make changes in its products or product
specifications or product documentation with the intent to improve function or design at any
time and without notice and is not required to update this documentation to reflect such
changes.

F&S Elektronik Systeme makes no warranty or guarantee regarding the suitability of its
products for any particular purpose, nor does F&S Elektronik Systeme assume any liability
arising out of the documentation or use of any product and specifically disclaims any and all
liability, including without limitation any consequential or incidental damages.

Specific testing of all parameters of each device is not necessarily performed unless
required by law or regulation.

Products are not designed, intended, or authorized for use as components in systems
intended for applications intended to support or sustain life, or for any other application in
which the failure of the product from F&S Elektronik Systeme could create a situation where
personal injury or death may occur. Should the Buyer purchase or use a F&S Elektronik
Systeme product for any such unintended or unauthorized application, the Buyer shall
indemnify and hold F&S Elektronik Systeme and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, expenses, and
reasonable attorney fees arising out of, either directly or indirectly, any claim of personal
injury or death that may be associated with such unintended or unauthorized use, even if
such claim alleges that F&S Elektronik Systeme was negligent regarding the design or
manufacture of said product.

Specifications are subject to change without notice.

Device Driver Documentation Windows Embedded Compact FSVYBRID | 47 of 49

Warranty Terms

Hardware Warranties

F&S guarantees hardware products against defects in workmanship and material for a
period of two (2) years from the date of shipment. Your sole remedy and F&S’s sole liability
shall be for F&S, at its sole discretion, to either repair or replace the defective hardware
product at no charge or to refund the purchase price. Shipment costs in both directions are
the responsibility of the customer. This warranty is void if the hardware product has been
altered or damaged by accident, misuse or abuse.

Software Warranties

Software is provided “AS IS”. F&S makes no warranties, either express or implied, with
regard to the software object code or software source code either or with respect to any third
party materials or intellectual property obtained from third parties. F&S makes no warranty
that the software is useable or fit for any particular purpose. This warranty replaces all other
warranties written or unwritten. F&S expressly disclaims any such warranties. In no case
shall F&S be liable for any consequential damages.

Disclaimer of Warranty

THIS WARRANTY IS MADE IN PLACE OF ANY OTHER WARRANTY, WHETHER
EXPRESSED, OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A SPECIFIC
PURPOSE, NON-INFRINGEMENT OR THEIR EQUIVALENTS UNDER THE LAWS OF
ANY JURISDICTION, EXCEPT THE WARRANTY EXPRESSLY STATED HEREIN. THE
REMEDIES SET FORTH HEREIN SHALL BE THE SOLE AND EXCLUSIVE REMEDIES OF
ANY PURCHASER WITH RESPECT TO ANY DEFECTIVE PRODUCT.

Limitation on Liability

UNDER NO CIRCUMSTANCES SHALL F&S BE LIABLE FOR ANY LOSS, DAMAGE OR
EXPENSE SUFFERED OR INCURRED WITH RESPECT TO ANY DEFECTIVE PRODUCT.
IN NO EVENT SHALL F&S BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL
DAMAGES THAT YOU MAY SUFFER DIRECTLY OR INDIRECTLY FROM USE OF ANY
PRODUCT. BY ORDERING THE PRODUCT, THE CUSTOMER APPROVES THAT THE
F&S PRODUCT, HARDWARE AND SOFTWARE, WAS THOROUGHLY TESTED AND HAS
MET THE CUSTOMER'S REQUIREMETS AND SPECIFICATIONS

Device Driver Documentation Windows Embedded Compact FSVYBRID | 48 of 49

Listings

Listing 1: Example WriteFile() 23

Listing 2: Example ReadFile() 24

Listing 3: Example set pin 31

Listing 4: Example clear pin 32

Listing 5: Example get pin 33

Listing 6: Matrix keyboard configuration example A. 43

Listing 7: Matrix keyboard configuration example B. 43

Listing 8: Analogue Input: Open channel 45

Listing 9: Analogue Input: reading samples 45

Listing 10: Analogue Input: changing channel from application 45

Listing 11: Analogue Input: closing a channel 45

Figures

Figure 1: I²C extension board 6

Figure 2: Tool FS_I2CSCAN.EXE 16

Figure 3: Connection between the drivers and the board 17

Figure 4: Sample schematic for a matrix keyboard 42

Tables

Table 1: I2C Slave Addresses 7

Table 2: DIP switch configuration 8

Table 3: Extension Connector J2 9

Table 4: ext_IO Registry Values 19

Table 5: Interrupt Configuration 20

Table 6: IOCTL command codes 27

Table 7: Matrix Keyboard: Registry settings 34

Table 8: Matrix Keyboard: Type registry value 35

Table 9: Matrix Keyboard: Cols registry values 35

Table 10: Matrix Keyboard: Rows registry values 35

WINCE_SKIA-I2C-EXT_V102_eng.doc#_Toc402891720
WINCE_SKIA-I2C-EXT_V102_eng.doc#_Toc402891722
WINCE_SKIA-I2C-EXT_V102_eng.doc#_Toc402891723

Device Driver Documentation Windows Embedded Compact FSVYBRID | 49 of 49

Table 11: Matrix Keyboard: Static registry values 36

Table 12: Matrix Keyboard: Map registry value 37

Table 13: Matrix Keyboard: PS2 Scan Codes 40

Table 14: Matrix Keyboard: Scan Codes matrix 8x8 C0 – C3 41

Table 15: Matrix Keyboard: Scan Codes matrix 8x8 C4 – C7 41

Table 16: Analogue Input: Registry 44

