
F&S Documentation “Secure
Boot”

Documentation for the “F&S Secure Boot”

Version 1.3
(2020-02-10)

© F&S Elektronik Systeme GmbH
Untere Waldplätze 23

D-70569 Stuttgart
Germany

Phone: +49(0)711-123722-0
Fax: +49(0)711-123722-99

About This Document
This document is intended to explain the usage of the Secure Boot on F&S Boards.

Remark
The version number on the title page of this document is the version of the document.
It is not related to the version number of any software release.

How To Print This Document
This document is designed to be printed double-sided (front and back) on A4 paper.
If you want to read it with a PDF reader program, you should use a two-page layout
where the title page is an extra single page. The settings are correct if the page
numbers are at the outside of the pages, even pages on the left and odd pages on
the right side. If it is reversed, then the title page is handled wrongly and is part of the
first double-page instead of a single page.

Typographical Conventions
We use different fonts and highlighting to emphasize the context of special terms:
File names

Menu entries

Board input/output

Program code

PC input/output

Listings

Generic input/output

Variables

8 9

Titlepage

F&S Secure Boot v

History
Date V Platform A,M,R Chapter Description Au
2017-01-27 1.0 Linux A All Initial document generation FB
2017-12-07 1.1 Linux M All Modify different chapters because of reworking the user tool PJ
2019-01-31 1.2 Linux M All Modify different chapters because of reworking the F&S Secure

Boot Tool
PJ

2020-02-10 1.3 Linux M All Update chapters to new code and reorder the structure PJ
V Version
A,M,R Added, Modified, Removed
Au Author

vi F&S Secure Boot

F&S Secure Boot vii

Table of Contents
1 Introduction 1

1.1 Boot Sequence ..1
1.2 Secure NBoot ..3
1.3 Secure U-Boot ...4

1.3.1 Build Secure U-Boot...5

2 Secure Boot on F&S Boards 6
2.1 Configure your host computer ...6
2.2 Get the tools and packages...6
2.3 Release Content..6
2.4 Install Content..7
2.5 Encrpyt/Sign Images ...9

2.5.1 Signed Images ...9
2.5.2 Encrypted Images ..10

3 F&S Secure Boot Tool usage 11
3.1 Creating Certificates ..11
3.2 Signing an image...15
3.3 Encrypting an image..16
3.4 Creating a JTAG response key ...20
3.5 Using custom settings ...21
3.6 Advanced F&S Secure Boot Tool usage ...24

4 Setting up a new board 26
4.1 Preconditions...26
4.2 Install secure images...26
4.3 Burn SRK Hash ...26
4.4 Set JTAG mode ...28
4.5 Enable Secure Boot...31
4.6 Dek blob creation...32

5 Getting started 34
5.1 Signed Boot ...34
5.2 Encrypted Boot ..34

6 Flowcharts 35

viii F&S Secure Boot

6.1 Create certificates and burn SRK hash ...35
6.2 Sign an image..36
6.3 Encrypt an image...37

List of Figures 38
List of Tables 38
Listings 38
Important Notice 38

Introduction

F&S Secure Boot 1

1 Introduction
This document is intended to describe the usage of the F&S Secure Boot. The F&S
Secure Boot package contains some binaries and precompiled images. There is also
a so called F&S Secure Boot Tool. This Tool is able to:
 create certificates (used for signing an image)
 sign an image (create unique hash sum for a specific memory range)
 encrypt an image (encrypt a specific memory range with a key)
 create a JTAG response key

The F&S Secure Boot Tool is a collection of shell scripts, which perform their
individual task (i.e. create certificates, sign an image, encrypt an image or create a
JTAG response key).

1.1 Boot Sequence

Figure 1 shows the typical boot sequence of the board.

Figure 1: Boot sequence

Introduction

2 F&S Secure Boot

Let us go through each step one by one, starting at the bottom.
1. The ROM-Loader is code that is located in a ROM inside of the chip. It is

usually capable of loading some piece of code from a boot device (NAND
flash, SD card, or similar). However at this point of time the dynamic RAM (D-
RAM) is not yet initialized. The chip does not even know if there is any D-RAM
attached at all. So it can only load this code to some rather small internal RAM
(IRAM). A regular U-Boot bootloader with more than 500KB will not fit in there.
This means we need a smaller step-stone loader first, which is called NBoot
on F&S systems. This step-stone loader is loaded to IRAM and then executed

2. NBoot (short for NAND-Boot) is a rather small step-stone bootloader. It
detects and activates the D-RAM and then loads the main bootloader U-Boot.
NBoot is the same for boards with Linux and Windows Embedded Compact.
Only from then on, the boot sequence differs. As long as NBoot is on the
board, the Linux system can be re-installed at any time without the need of
special software or hardware tools. When erasing the memory, NBoot is
supposed to stay on the board.

3. U-Boot is the main bootloader. It is used to load and execute the Linux kernel
and the device tree. It is also used to install the Linux images and to configure
the boot procedure.

4. The Linux kernel provides the Linux operating system including the device
drivers. It will activate the peripherals and finally mounts the root filesystem.

5. The root filesystem contains the code for the init process and all the Userland
software. The init process will finalize the boot process, for example it will start
the background services, the GUI and probably the main application.

With the F&S Secure Boot package you are able to sign/encrypt the following stages:

 NBoot

 U-Boot

 Linux Kernel

Introduction

F&S Secure Boot 3

1.2 Secure NBoot

The secure NBoot is only available as a binary. The source code will not published.
Below there is a table which commands are in NBoot available.

NBoot VS (Secure) Commands
Menu

\r re-display menu
\n re-display menu
? Show some of the most important commands
E Erase whole flash, excluded NBoot
r Reboot hardware
d Serial Download of bootloader
D Serial Download of bootloader
f2 Save image to flash
l2 Loading installed bootloader image (UBoot/EBoot)
L2 Loading installed bootloader image (NBoot)
x2 execute image
c Load EBoot/U-Boot from SD card (not implemented yet)
B Show bad blocks
N Load NBoot from SD card (not implemented yet)
. Show fuses menu

Fuses Menu
11 Blow fuses to boot from NAND (only allowed if board is in open mode)
71 Blow fuses Serial Number (only allowed if board is in open mode) and lock

serial number
81 Enable Watchdog (only allowed if board is in open mode)
R3 Revoke SRK
s1 dump secure fuses: Security Configuration, SRK-Revoke, JTAG Mode,

*SRK-HASH
S1 Set SRK-HASH (only allowed if board is in open mode) and lock SRK

Introduction

4 F&S Secure Boot

J1 Set JTAG mode fuse, if necessary JTAG responsible key too and lock JTAG
l1 HAB Status and Event logging
B1 Set Boot Security Settings (only allowed if board is in open mode)

Table 1: NBoot VS commands

1 only allowed if board is in open mode
2 Images will be verified
3 If in closed mode only available if CSF is set with feature [Unlock] – Engine =
OCOTP, Features = SRK Revoke

1.3 Secure U-Boot

The secure U-Boot is available as a binary and in source code. You can find it in the
release archive.
The U-Boot has implemented the authentication mechanism. Below is listed when an
image will be authenticated.

 If one of the following NAND partitions will be written with the “nand write”

command, the images will be verified. Partitions: UBoot, Kernel, FDT and

Images.

 If the boot/bootz/bootm/bootd command is executed the images will be

verified.

Supported Image types:

 UBoot

 zImage

 legacy Image (uImage)

 FIT-Images

 Device-Trees

It is necessary that only the outer images are signed not the inner. So if you are
using e.g. an FIT-Image, the images inside of the FIT-Image are not allowed to be
signed, only the FIT-Image itself. The same applies to the legacy image.

Introduction

F&S Secure Boot 5

1.3.1 Build Secure U-Boot

The following example refers to the architecture fsimx6.
To build the Secure U-Boot change to extracted U-Boot folder
[fs-dev@localhost ~]$ cd u-boot-2018.03-fssecure-V<year>.<month>

After that setup the correct secure defconfig.
[fs-dev@localhost u-boot-2018.03-fssecure-V<year>.<month>]$ make
fsimx6_secure_boot_defconfig

Now the correct defconfig is setup and we can build the U-Boot image.
[fs-dev@localhost u-boot-2018.03-fssecure-V<year>.<month>]$ make

The output image is called u-boot.bin and can be signed now.

Note:
F&S has implement the verification process to U-Boot, but that doesn´t means the whole U-
Boot is secure. The access e.g. to write the memory and registers are farther granted. So the
user have to check his requirements and setup the U-Boot by himself. We recommend
preventing access to the U-Boot.

Secure Boot on F&S Boards

6 F&S Secure Boot

2 Secure Boot on F&S Boards

2.1 Configure your host computer
In order to configure your computer properly (in order to use F&S software) please
refer to the “Linux on F&S Boards” guide provided by F&S Elektronik Systeme. After
you have done this, continue with this guide.
It is crucial that you install the packages “GNU objcopy” version 2.15 or
higher” and “OpenSSL” 1.10 or higher provided from Fedora standard
repositories.

2.2 Get the tools and packages
First of all, download the F&S Secure Boot package from the F&S website and get
the Code Signing Tool (CST) from NXPs website. The tested version of the CST is
“3.2.0”. We recommend you to use this version, older or newer versions may also
work but are not tested.

2.3 Release Content
These tar archive is compressed with bzip2. So to see the files, you first have to
unpack the archive.
tar xvf fs-secure-boot-V<year>.<month>.tar.bz2

This will create a directory fs-secure-boot-<YEAR>.<MONTH> that contains all
the files of the release, except the CST.
They often use a common naming scheme:

<package>-<YEAR>.<MONTH>.<extension>

With the following meaning:
<package>................................... The name of the package (e.g. fs-secure-boot).
<year>.<month>.......................... The year and month of the release (e.g. 2019.02)
<extension>.............................. The extension of the package (e.g. .bin, .tar.bz2,

etc.). Please note that some file types do not have
an extension, for example the zImage file of the
Linux kernel.

Secure Boot on F&S Boards

F&S Secure Boot 7

The following table lists the files that you get after unpacking the release archive.
Directory Description

/ Top Directory
Readme.txt Release information

setup-fs-secure-boot
Script to unpack F&S Secure Boot
source packages to a build directory

binaries/ Images to be used with the board directly
nbootimx6_secure_<v>.bin NBoot fsimx6 secure bootloader image
nbootimx6sx_secure_<v>.bin NBoot fsimx6sx secure bootloader image
nbootimx6ul_secure_<v>.bin NBoot fsimx6ul secure bootloader image

u-boot-secure-fsimx6.bin U-Boot fsimx6 secure image without
padding

u-boot-secure-fsimx6sx.bin U-Boot fsimx6sx secure image without
padding

u-boot-secure-fsimx6ul.bin U-Boot fsimx6ul secure image without
padding

/sources Configurations and sources
u-boot-2018.03-fssecure-
V<year>.<month>.tar.bz2 U-Boot secure source code

fs-secure-boot-tool-
V<year>.<month>.tar.bz2 F&S Secure Boot Tool source code

doc/ Documentation
FS_Secure_Boot.pdf F&S Secure Boot document

Table 2: Content of the created release directory

2.4 Install Content
The source code packages are located in the sources subdirectory of the release
archive. We will assume that you want to create a separate build directory where you
extract the source code and build all the software. The easiest way is to extract U-
Boot and F&S Secure Boot Tool next to each other, so that the top directories of their
source trees are siblings.

Secure Boot on F&S Boards

8 F&S Secure Boot

We have prepared a shell script called setup-fs-secure-boot that does this
installation automatically. Just call it when you are in the top directory of the release
and give the name of the build directory as argument.
cd <release-dir>

./setup-fs-secure-boot

Add option --dry-run if you want to check first what this command will do. Then
only a list of actions will be output but no actual changes will take place. For further
information simply call
./setup-fs-secure-boot –help

Note:
Option --dry-run was introduced in release fs-secure-boot-tool-2019.02. In older
versions you also had to create the target build directory by hand before calling the
script.

If you prefer to do the installation by hand, well, the script more or less executes the
following commands, just with some more checks and directory switching.
mkdir <build-dir>

tar xf u-boot-2018.03-fssecure-V<year>.<month>.tar.bz2

tar xf fs-secure-boot-tool-V<year>.<month>.tar.bz2

After you got both tools, make sure to export an environment variable called
CST_DIR. This variable is necessary because here you setup the path to the
corresponding CST directory. Be sure that the path to the directory ends with and /.
[fs-dev@localhost ~]$ export CST_DIR=/home/fs-dev/release/

[fs-dev@localhost ~]$ echo $CST_DIR

/home/fs-dev/release/

Note:
F&S Elektronik Systeme tested the F&S Secure Boot Tool and the CST on a Fedora 27
machine. We do not test other linux distributions neither does the F&S Secure Boot Tool run
under Windows.

Secure Boot on F&S Boards

F&S Secure Boot 9

2.5 Encrpyt/Sign Images
F&S support different kind of images which can be signed or encrypted. Here is a list
which images can be signed or encrypted:

 NBoot Images

 UBoot Images

 zImages

 uImages

 FIT-Images

 Device Tree Images

2.5.1 Signed Images

Here is a small overview which parts of the images will be signed by default.

Image Types Signed areas
Offset Length

NBoot Images1 0x0
0x14

0x10
end of Image

UBoot Images 0x0 end of Image
zImages 0x0 end of Image
uImages 0x0 end of Image
FIT-Images 0x0 end of Image
Device Tree 0x0 end of Image
1 There are 4 Bytes in NBoot which will dynamically setup while transferring it. So that´s the reason
why these 4 Bytes can´t be signed.

Secure Boot on F&S Boards

10 F&S Secure Boot

2.5.2 Encrypted Images

Here is a small overview which parts of the images will be signed by default.

Image Types Signed areas Encrypted areas
Offset Length Offset Length

NBoot Images12 0x0
0x14

0x10
0x41c

0x430 end of Image

UBoot Images3 0x0 0x80 0x80 end of Image
zImages4 0x0 0x68 0x68 end of Image
uImages5 0x0 0x80 0x80 end of Image
FIT-Images5 0x0 0x68 0x68 end of Image
Device Tree5 0x0 0x68 0x68 end of Image
1 There are 4 Bytes in NBoot which will dynamically setup while transferring it. So that´s the reason
why these 4 Bytes can´t be signed.
2 The signing goes from beginning of the Image to the IVT and Boot Data Header. Everything else is
encrypted.
3 The signing goes from beginning of the Image to the Magic Number of the UBoot. Everything else is
encrypted.
4 The signing goes from beginning of the Image to the Magic Number of the zImage. Everything else is
encrypted.
5 The signing goes from beginning of the Image to the whole header of the Image. Everything else is
encrypted.

F&S Secure Boot Tool usage

F&S Secure Boot 11

3 F&S Secure Boot Tool usage
In this chapter the general usage of the F&S Secure Boot Tool is illustrated.

3.1 Creating Certificates
First of all we need to open a terminal (preferably bash). After the terminal started
navigate to the F&S Secure Boot Tool directory using the “cd” command.
cd "path_to_fs-secure-boot-tool-V<year>.<month>"

When you entered the directory, execute the “generate.sh” script.
./generate.sh

Press 'c' and 'enter' in order to create the certificates. After that, you have to enter a
serial number and a passphrase. Use the recommended setting for the certificates:
 create a new CA (certificate authority) key

 key length in bits for PKI tree is 2048

 PKI (Public Key Infrastructure) tree duration is 5 years (doesn't matter if it

expires)

 SRKs (Super Root Keys) are generated as CA keys

Creating certificates:
[fs-dev@localhost fs-secure-boot-tool-V<year>.<month>]$
./generate.sh

Do you want to create certificates, create jtag response key, sign
an image or encrypt an image (c/j/s/e)?

Note: When an image is encrypted it´s also signed!

c

Please enter a serial number (8 digits!):12345678

Please enter a passphrase (no blanks!):FS_Elektronik

F&S Secure Boot Tool usage

12 F&S Secure Boot

Note:
These are sample inputs, you want to use your own specifications.
Creating the SRKs (super root keys) as CA (certificate authority) certificates is
recommended. Not all NXP CPUs including HAB (high assurance boot) support SRKs as
non CA certificates. Furthermore using a different key length isn't recommended. NBoot
doesn't support a greater value yet.
Also the Elliptic Curve Cryptography and fast authentication tree isn't tested yet.

After this, the “hab4_pki_tree.sh” script developed by NXP is called. Please refer
to the “CST_UG.pdf” for more information about this script and about the
signing/encryption process. Below is an example configuration.
 +++

 This script is a part of the Code signing tools for Freescale's

 High Assurance Boot. It generates a basic PKI tree. The PKI

 tree consists of one or more Super Root Keys (SRK), with each

 SRK having two subordinate keys:

 + a Command Sequence File (CSF) key

 + Image key.

 Additional keys can be added to the PKI tree but a separate

 script is available for this. This this script assumes openssl

 is installed on your system and is included in your search

 path. Finally, the private keys generated are password

 protectedwith the password provided by the file key_pass.txt.

 The format of the file is the password repeated twice:

 my_password

 my_password

 All private keys in the PKI tree are in PKCS #8 format will be

 protected by the same password.

 +++

Do you want to use an existing CA key (y/n)?: n

Do you want to use Elliptic Curve Cryptography (y/n)?: n

Enter key length in bits for PKI tree: 2048

Enter PKI tree duration (years): 5

How many Super Root Keys should be generated? 4

F&S Secure Boot Tool usage

F&S Secure Boot 13

Do you want the SRK certificates to have the CA flag set? (y/n)?:
y

+++++++++++++++++++++++++++++++++++++

+ Generating CA key and certificate +

+++++++++++++++++++++++++++++++++++++

++

+ Generating SRK key and certificate 1 +

++

++

+ Generating CSF key and certificate 1 +

++

++

+ Generating IMG key and certificate 1 +

++

++

+ Generating SRK key and certificate 2 +

++

++

+ Generating CSF key and certificate 2 +

++

++

F&S Secure Boot Tool usage

14 F&S Secure Boot

+ Generating IMG key and certificate 2 +

++

++

+ Generating SRK key and certificate 3 +

++

++

+ Generating CSF key and certificate 3 +

++

++

+ Generating IMG key and certificate 3 +

++

++

+ Generating SRK key and certificate 4 +

++

++

+ Generating CSF key and certificate 4 +

++

++

+ Generating IMG key and certificate 4 +

++

Certificate(s) sucessfully created

F&S Secure Boot Tool usage

F&S Secure Boot 15

checksum is: 4278

srkhash.txt is ready!

After the certificates are generated, the F&S Secure Boot Tool outputs a text file
called srkhash.txt. This file contains a checksum and the hash value (which are
meant to be burned into the fuses).

Note:
You can only create once certificates. If you have done something wrong delete the CST and
unpack it again.
When you want to use several keys for different products then you have to create several
CST folder to handle the keys.

3.2 Signing an image
Again, execute the “generate.sh” script. After that press 's', 'enter' and 'd', 'enter'.
You will be reeted with an enumeration of CPU architectures. Select the architecture
that suits your board by pressing '1', '2', '3', ‘4’ or ‘5’ and 'enter'.
[fs-dev@localhost fs-secure-boot-tool-V<year>.<month>]$
./generate.sh

Do you want to create certificates, create jtag response key, sign
an image or encrypt an image (c/j/s/e)?

Note: When an image is encrypted it´s also signed!

s

Do you want to use the default or custom settings (d/c)?

d

1) FSIMX6SDQ

2) FSIMX6SX

3) FSIMX6UL

4) FSIMX6ULL

5) FSVYBRID

#? 1

F&S Secure Boot Tool usage

16 F&S Secure Boot

Now you need to enter the path (absolute path!) to the image you want to sign and
press 'enter'.
Enter image path (absolute path!)

/home/fs-dev/u-boot.bin

Signed image (uboot_sdq_signed.nb0) successfully generated.

Now the signed image (in this example the signed U-Boot
“uboot_sdq_signed.nb0”) is created and is placed in the subdirectory bin/ of
your current directory.
[fs-dev@localhost fs-secure-boot-tool-V<year>.<month>]$ ls

bin/ encryptImage.sh* README.txt

boot_raw generate.sh* release/

boot_raw_edited History-F+S-UserTool.txt signImage.sh*

createCertificates.sh* jtag.sh* srkhash.txt

cst-3.2.0.tgz makeAction.sh*

Repeat this with all images (except the root file system).

3.3 Encrypting an image
At the moment we only support OTPMK as master key.
Execute the “generate.sh” script. After that enter 'e', 'enter' and 'd', 'enter'. You will
be greeted with an enumeration of CPU architectures. Select the architecture you
have on your board by pressing '1', '2', '3', '4' or ‘5’ and 'enter'.
[fs-dev@localhost fs-secure-boot-tool-V<year>.<month>]$
./generate.sh

Do you want to create certificates, create jtag response key, sign
an image or encrypt an image (c/j/s/e)?

Note: When an image is encrypted it´s also signed!

e

Do you want to use the default or custom settings (d/c)?

d

1) FSIMX6SDQ

F&S Secure Boot Tool usage

F&S Secure Boot 17

2) FSIMX6SX

3) FSIMX6UL

4) FSIMX6ULL

5) FSVYBRID

#? 1

Now you need to enter the path to the image (absolute path!) you want to encrypt
and press 'enter'. After you have done this, you need to enter the key length
(128/192/256 bits).
Enter image path (absolute path!)

/home/fs-dev/u-boot.bin

Enter key length (128/192/256):

256

Insert key

The F&S Secure Boot Tool asks you for your key “Insert key”. Before we can do this,
we need to generate the key (so called dek blob) on the board. The private key called
dek.bin was created by the tool and automatically copied to the /tftpboot folder.

After entering the U-Boot, transfer the “dek.bin” to the board using tftp and generate
the key by running:
U-Boot 2014.07-ga8061e6 (Dec 07 2017 – 09:25:44) for F&S

CPU: Freescale i.MX6DL rev1.3 at 792 MHz

RESET: POR

Board: efusA9 Rev. 1.20 (LAN, eMMC, 2x DRAM)

DRAM: 512 MiB

NAND: 256 MiB

MMC: FSL_SDHC: 0, FSL_SDHC: 1

In: serial

Out: serial

Err: serial

Net: FEC [PRIME]

USB EHCI 1.00

F&S Secure Boot Tool usage

18 F&S Secure Boot

Hit any key to stop autoboot: 0

efusA9 # tftp dek.bin

Using FEC device

TFTP from server 10.0.0.109; our IP address is 10.0.0.252

Filename ‘dek.bin’.

Load address: 0x10800000

Loading:

 *

 2.9 KiB/s

done

Bytes transferred = 32 (0x20)

efusA9 # dek_blob $loadaddr 0x10800100 256

SEC: RNG instantiated

Encapsulating provided DEK to form blob

DEK Blob

8100584166552000CC526D82F83EB075FF0228052EA1B3E2E502F436B142CDE30F
08053DD00C4397DCCB3E2DBC350260A46BC3EDC07E15A5538DFA9FFAF9C6B64902
35D332CFEE6B8E9B9B4F22B5C7F2CA081466553C03EB

efusA9 #

The key in the red box is the key we need to attach to the image. This is done by
marking the key and copy it into the terminal where the F&S Secure Boot Tool is
currently running and hit 'enter'.
Enter key length (128/192/256):

256

Insert key

8100584166552000CC526D82F83EB075FF0228052EA1B3E2E502F436B142CDE30F
08053DD00C4397DCCB3E2DBC350260A46BC3EDC07E15A5538DFA9FFAF9C6B64902
35D332CFEE6B8E9B9B4F22B5C7F2CA081466553C03EB

Encrypted image (uboot_sdq_enc_otpmk.nb0) successfully generated.

Note:
Your generated key looks different! This is just a sample key. Furthermore from time to time
the key won't generate on the board (means there is no key outputted). The best practice is
to perform a hardware reset and try again.

F&S Secure Boot Tool usage

F&S Secure Boot 19

Below is the full example output log again.
[fs-dev@localhost fs-secure-boot-tool-V<year>.<month>]$
./generate.sh

Do you want to create certificates, create jtag response key, sign
an image or encrypt an image (c/j/s/e)?

Note: When an image is encrypted it´s also signed!

e

Do you want to use the default or custom settings (d/c)?

d

1) FSIMX6SDQ

2) FSIMX6SX

3) FSIMX6UL

4) FSIMX6ULL

5) FSVYBRID

#? 1

Enter image path (absolute path!)

/home/fs-dev/u-boot.bin

Enter key length (128/192/256):

256

Insert key

8100584166552000CC526D82F83EB075FF0228052EA1B3E2E502F436B142CDE30F
08053DD00C4397DCCB3E2DBC350260A46BC3EDC07E15A5538DFA9FFAF9C6B64902
35D332CFEE6B8E9B9B4F22B5C7F2CA081466553C03EB

Encrypted image (uboot_sdq_enc_otpmk.nb0) successfully generated.

Now, the encrypted image is ready and is placed in the subdirectory bin/ of your
current directory.

Note:
Since the CST from NXP uses the “/dev/random” device, it can take some time until the
images are encrypted.

F&S Secure Boot Tool usage

20 F&S Secure Boot

3.4 Creating a JTAG response key
If you want to setup the JTAG mode to secure then you have to create a JTAG
response key. Execute the “generate.sh” script. After that enter ‘j’, ‘enter’ and then
enter the JTAG response key 7 Bytes and Little-Endian.
[fs-dev@localhost fs-secure-boot-tool-V<year>.<month>]$
./generate.sh

Do you want to create certificates, create jtag response key, sign
an image or encrypt an image (c/j/s/e)?

Note: When an image is encrypted it´s also signed!

j

Please enter the response key (7 Bytes) (Little-Endian) and
confirm it with enter

123456789abcde

checksum is: 840

jtag_resp_key.txt is ready!

Now the JTAG response key called jtag_resp_key.txt is created and is placed
in the current directory.

F&S Secure Boot Tool usage

F&S Secure Boot 21

3.5 Using custom settings
Creating certificates
Since we at F&S Elektronik Systeme can't distribute the CST (developed from NXP)
we can't feature default settings for the certification generation. But we highly
recommend using the following settings:
 create a new CA (certificate authority) key
 key length in bits for PKI tree is 2048
 PKI (public key infrastructure) tree duration is 5 years (doesn't matter if it

expires)
 SRKs (super root keys) are generated as CA keys

Note:
Creating the SRKs as CA certificates is recommended. Not all NXP CPUs including HAB
support SRKs as non CA certificates. Furthermore using a different key length isn't
recommended. NBoot doesn't support a greater value yet. Furthermore NBoot doesn't
support keys larger than 2048 yet.

Signing an image
The steps are fairly the same as when you use the default settings. The only thing
that changes is that enter an output name and the load address (in hexadecimal).

Note:
The load address is entered without the leading '0x'.

 [fs-dev@localhost fs-secure-boot-tool-V<year>.<month>]$
./generate.sh

Do you want to create certificates, create jtag response key, sign
an image or encrypt an image (c/j/s/e)?

Note: When an image is encrypted it´s also signed!

e

Do you want to use the default or custom settings (d/c)?

c

Enter output name:

my_output_binary.bin

Enter Loadaddress (Hex):

Note: Type your Loadaddress without 0x at the beginning!

F&S Secure Boot Tool usage

22 F&S Secure Boot

10800000

1) FSIMX6SDQ

2) FSIMX6SX

3) FSIMX6UL

4) FSIMX6ULL

5) FSVYBRID

#? 1

Enter image path (absolute path!)

/home/fs-dev/u-boot.bin

Signed image (my_output_binary.bin) successfully generated.

Encrypting an image
The steps are fairly the same as when you use the default settings. The only
difference is, that you enter an output name and the load address (in hexadecimal).

Note:
The load address is entered without the leading '0x'.

[fs-dev@localhost fs-secure-boot-tool-V<year>.<month>]$
./generate.sh

Do you want to create certificates, create jtag response key, sign
an image or encrypt an image (c/j/s/e)?

Note: When an image is encrypted it´s also signed!

e

Do you want to use the default or custom settings (d/c)?

c

Enter output name:

my_output_binary.bin

Enter Loadaddress (Hex):

Note: Type your Loadaddress without 0x at the beginning!

10800000

1) FSIMX6SDQ

2) FSIMX6SX

3) FSIMX6UL

F&S Secure Boot Tool usage

F&S Secure Boot 23

4) FSIMX6ULL

5) FSVYBRID

#? 1

Enter image path (absolute path!)

/home/fs-dev/u-boot.bin

Enter key length (128/192/256):

256

Insert key

8100584166552000CC526D82F83EB075FF0228052EA1B3E2E502F436B142CDE30F
08053DD00C4397DCCB3E2DBC350260A46BC3EDC07E15A5538DFA9FFAF9C6B64902
35D332CFEE6B8E9B9B4F22B5C7F2CA081466553C03EB

Encrypted image (my_output_binary.bin_enc_otpmk) successfully
generated.

F&S Secure Boot Tool usage

24 F&S Secure Boot

3.6 Advanced F&S Secure Boot Tool usage
Instead of calling “genereate.sh”, you can call “makeAction.sh” and give this script
the transfer parameters.
Available parameters:

--outputoutput name
--cpu ..CPU architecture
--actioncreate certificates, sign image or encrypt image
--image-pathabsolute image path
--key-lengthkey length in bits
--master-keymaster key otpmk
--jtag-resp-keyjtag responsible key

--output=...
Any string can be entered as an output name.

--cpu=...
Possible parameters:
1 ..FSIMX6SDQ
2 ..FSIMX6SX
3 ..FSIMX6UL
4 ...FSIMX6ULL
5 ..FSVYBRID
--action=...
Possible parameters:
c...create
s...sign
e ..encrypt
j..JTAG response key
--image-path=...
Absolute path to the image

F&S Secure Boot Tool usage

F&S Secure Boot 25

--key-length=...
Possible parameters:
128 ..128 bit key
192 ..192 bit key
256 ..256 bit key
--master-key=...
Possible parameters:
o ..master key is otpmk
--jtag-resp-key=...
Possible parameters:
hex-value...................................jtag responsible key 7 Bytes, Little-Endian

Setting up a new board

26 F&S Secure Boot

4 Setting up a new board

4.1 Preconditions
You read the documentation “Linux on F&S Boards” and installed all the necessary
packages and set up a tftp service. Furthermore you downloaded the Code Signing
Tool from NXP.com and the F&S Secure Boot Tool from F&S Elektronik Systeme. It
should be mentioned that you also need the N- and U-Boot with security features.

4.2 Install secure images
The first step is to install the secure images, which corresponds to the architecture
which you are using. We assume that our architecture is fsimx6.

 nbootimx6_secure_<v>.bin

 u-boot-secure-fsimx6.bin

To install these images on your board please take a look to the document Linux on
F&S Boards. You can find this document on our homepage.

4.3 Burn SRK Hash
In order to burn the SRK hash value into the fuses, you first need to enter the NBoot.
After you entered the NBoot press '.' to show the hidden menu. In this hidden menu
there is an entry called “Set SRK-HASH”. You enter this function by pressing 'S'.
Now you must enter the hash value. This is simply done by transferring the
“srkhash.txt” to the board (after you pressed 'S'!). The hash sum will be printed in
order to verify it. After you verified the hash sum, press 'y'. Now the hash sum is
burned into the fuses which means, that when we close the board (done in the next
step) the ROM functions uses this value to verify an image.

Note:
When you burned the hash value to the fuses be very careful, since this value can't be
changed. A wrong value means that the board won't boot anymore when it's closed.

Setting up a new board

F&S Secure Boot 27

Please select action

‘d’ -> Serial download of bootloader

‘E’ -> Erase flash

‘B’ -> Show bad blocks

Use NetDCUUsbLoader for USB download

Select fuse settings

‘1’ -> Boot from NAND (64 pages)

‘S’ -> Set SRK-HASH

‘B’ -> Set Boot Security Settings

‘J’ -> Set JTAG mode

‘s’ -> dump secure fuses

‘l’ -> HAB events

‘R’ -> Revoke SRK

THIS IS A PERMANENT CHANGE

please enter the Hash-Value and confirm it with enter

CRC-Check successful!

The following fuses will be blown:

 address 0x18 value 0x12e61558

 address 0x19 value 0xd4023941

 address 0x1a value 0xf69b56a7

 address 0x1b value 0x3457b2b4

 address 0x1c value 0xe86dad80

 address 0x1d value 0xe755cc48

 address 0x1e value 0xf2ca8c01

 address 0x1f value 0x3655f33c

 address 0x00 value 0x00004000

Enter ‘y’ to proceed, any other key to exit

Blowing fuses

address 0x18 value 0x12e61558 ...blown

address 0x19 value 0xd4023941 ...blown

Setting up a new board

28 F&S Secure Boot

address 0x1a value 0xf69b56a7 ...blown

address 0x1b value 0x3457b2b4 ...blown

address 0x1c value 0xe86dad80 ...blown

address 0x1d value 0xe755cc48 ...blown

address 0x1e value 0xf2ca8c01 ...blown

address 0x1f value 0x3655f33c ...blown

address 0x00 value 0x00004000 ...blown

Finished blowing fuses

4.4 Set JTAG mode
An important and powerful interface is JTAG. JTAG is by default activated so
everybody can use this interface to debug the system. That’s why JTAG is a Security
vulnerability if you are using Secure Boot. You have the possibility to disabled the
JTAG interface or using JTAG secure, which means you can use the JTAG interface
with a private key. It is necessary to setup the JTAG mode before you enable the
Secure Boot, because afterwards there is a write protect on the fuses so can´t
change the bits for JTAG.

Disable JTAG:
Disable JTAG is done by entering the hidden menu again and press 'J' after that you
need to press 'd' and confirm with 'y'. The board has now disabled the JTAG
interface.
Please select action

‘d’ -> Serial download of bootloader

‘E’ -> Erase flash

‘B’ -> Show bad blocks

Use NetDCUUsbLoader for USB download

Select fuse settings

‘1’ -> Boot from NAND (64 pages)

‘S’ -> Set SRK-HASH

‘B’ -> Set Boot Security Settings

‘J’ -> Set JTAG mode

‘s’ -> dump secure fuses

Setting up a new board

F&S Secure Boot 29

‘l’ -> HAB events

‘R’ -> Revoke SRK

THIS IS A PERMANENT CHANGE!

please enter ‘s’ to set secure JTAG or ‘d’ to set disable JTAG
debugging

The following fuses will be blown:

 address 0x06 value 0x00100000

 address 0x06 value 0x00c00000

Enter ‘y’ to proceed, any other key to exit

Blowing fuses

 address 0x06 value 0x00100000

 address 0x06 value 0x00c00000

Finished blowing fuses

Secure JTAG:
Secure JTAG is done by entering the hidden menu again and press 'J' after that you
need to press 's' and enter the response key which you have created with the User
Tool. After that confirm it with 'y'. The JTAG interface is now set to secure JTAG.
Please select action

‘d’ -> Serial download of bootloader

‘E’ -> Erase flash

‘B’ -> Show bad blocks

Use NetDCUUsbLoader for USB download

Select fuse settings

‘1’ -> Boot from NAND (64 pages)

‘S’ -> Set SRK-HASH

‘B’ -> Set Boot Security Settings

‘J’ -> Set JTAG mode

‘s’ -> dump secure fuses

Setting up a new board

30 F&S Secure Boot

‘l’ -> HAB events

‘R’ -> Revoke SRK

THIS IS A PERMANENT CHANGE!

please enter ‘s’ to set secure JTAG or ‘d’ to set disable JTAG
debugging

please enter the response key and confirm it with enter

CRC-Check successful!

The following fuses will be blown:

 address 0x20 value 0x789abcde

 address 0x21 value 0x00123456

Enter ‘y’ to proceed, any other key to exit

Blowing fuses

 address 0x20 value 0x789abcde

 address 0x21 value 0x00123456

Finished blowing fuses

The following fuses will be blown:

 address 0x06 value 0x00100000

 address 0x06 value 0x00c00000

Enter ‘y’ to proceed, any other key to exit

Blowing fuses

 address 0x06 value 0x00100000

 address 0x06 value 0x00c00000

Finished blowing fuses

Setting up a new board

F&S Secure Boot 31

4.5 Enable Secure Boot
Before you enable Secure Boot be sure you have installed a correctly signed image.
Once burned this fuse you are not able to revoke the fuse. Also you have to check
the JTAG mode. By default the JTAG mode is open. So be sure you setup JTAG
secure or disable the interface. If not anybody are able to connect the board to JTAG
and debug the system.
To set the board configuration to “closed”. This is done by entering the hidden menu
again and press 'B' after that you need to press 'c' and confirm with 'y'. The board is
now in closed configuration and will only accept correct signed/encrypted images.
Please select action

‘d’ -> Serial download of bootloader

‘E’ -> Erase flash

‘B’ -> Show bad blocks

Use NetDCUUsbLoader for USB download

Select fuse settings

‘1’ -> Boot from NAND (64 pages)

‘S’ -> Set SRK-HASH

‘B’ -> Set Boot Security Settings

‘J’ -> Set JTAG mode

‘s’ -> dump secure fuses

‘l’ -> HAB events

‘R’ -> Revoke SRK

testing NBoot …

found CSF

successfully authenticated

THIS IS A PERMANENT CHANGE!

HAB STATUS: Open

please enter ‘c’ to set HAB-Mode: Closed

The following fuses will be blown:

 address 0x06 value 0x00000002

 address 0x08 value 0x00100000

Setting up a new board

32 F&S Secure Boot

 address 0x06 value 0x00060000

 address 0x00 value 0x0000000c

Enter ‘y’ to proceed, any other key to exit

Blowing fuses

address 0x06 value 0x00000002 ...blown

address 0x08 value 0x00100000 ...blown

address 0x06 value 0x00060000 ...blown

address 0x00 value 0x0000000c ...blown

Finished blowing fuses

4.6 Dek blob creation
If you want to create an encrypted image, it is required that you have installed secure
U-Boot.
After entering the U-Boot, transfer the key from User Tool “dek.bin” to the board
e.g. using TFTP.
U-Boot 2014.07-ga8061e6 (Dec 07 2017 – 09:25:44) for F&S

CPU: Freescale i.MX6DL rev1.3 at 792 MHz

RESET: POR

Board: efusA9 Rev. 1.20 (LAN, eMMC, 2x DRAM)

DRAM: 512 MiB

NAND: 256 MiB

MMC: FSL_SDHC: 0, FSL_SDHC: 1

In: serial

Out: serial

Err: serial

Net: FEC [PRIME]

USB EHCI 1.00

Hit any key to stop autoboot: 0

efusA9 # tftp dek.bin

Using FEC device

Setting up a new board

F&S Secure Boot 33

TFTP from server 10.0.0.109; our IP address is 10.0.0.252

Filename ‘dek.bin’.

Load address: 0x10800000

Loading:

 *

 2.9 KiB/s

done

Bytes transferred = 32 (0x20)

efusA9 #

Now you can call the dek_blob function in U-Boot. The dek_blob function expect 3
parameters

1. Source RAM address which points to the key

2. Destination RAM address which points to the dek blob

3. Key length, is the length which you have entered during the F&S Secure Boot

Tool execution.

Now generate the key by running:
efusA9 # dek_blob $loadaddr 0x10800100 256

SEC: RNG instantiated

Encapsulating provided DEK to form blob

DEK Blob

8100584166552000CC526D82F83EB075FF0228052EA1B3E2E502F436B142CDE30F
08053DD00C4397DCCB3E2DBC350260A46BC3EDC07E15A5538DFA9FFAF9C6B64902
35D332CFEE6B8E9B9B4F22B5C7F2CA081466553C03EB

efusA9 #

The key in the red box is the output key and is known as dek blob.

Getting started

34 F&S Secure Boot

5 Getting started
The first step you need to do is create certificates and the resulting srkhash.txt
(for burning the fuses).

5.1 Signed Boot
1. Execute the F&S Secure Boot Tool and sign a secure NBoot image.

2. Transfer this NBoot image to the board and save it to NAND flash.

3. After that check if any HAB event occurs.

4. Setup JTAG mode.

5. Burn the “closed” fuse to activate Secure Boot.

6. Power off the board for a few seconds and Power it on again.

a. If you see the NBoot menu the images is correctly signed and Secure

Boot is working.

b. If you don’t see anything there was something and the image cannot be

verified. So the board is now broken.

5.2 Encrypted Boot
Preconditions:
Before you do an encrypted Boot be sure you have done a Signed Boot and it was
successfully.
Also you must have installed a signed secure NBoot and a signed secure UBoot.

1. Now execute the F&S Secure Boot Tool and encrypt an image. If the line

“Insert key” prompts you have to create the dek blob on the Board.

2. Insert created dek blob to F&S Secure Boot Tool.

3. Transfer this image to the board and save it to NAND flash.

4. If no HAB Event occurs everything was successful.

Flowcharts

F&S Secure Boot 35

6 Flowcharts

6.1 Create certificates and burn SRK hash

Figure 2: Creating certificates and blow fuses (new board)

Note:
You have to create your certificates only once! Furthermore you have to blow the fuses on
every board!

Flowcharts

36 F&S Secure Boot

6.2 Sign an image

Figure 3: Signing images

Note:
You have to sign your images only once.

Flowcharts

F&S Secure Boot 37

6.3 Encrypt an image

Figure 4: Encrypting images

Flowcharts

38 F&S Secure Boot

List of Figures
Figure 1: Boot sequence...1
Figure 2: Creating certificates and blow fuses (new board) ...35
Figure 3: Signing images..36
Figure 4: Encrypting images...37

List of Tables
Table 1: NBoot VS commands ...4
Table 2: Content of the created release directory ..7

Listings

Important Notice
The information in this publication has been carefully checked and is believed to be entirely
accurate at the time of publication. F&S Elektronik Systeme assumes no responsibility,
however, for possible errors or omissions, or for any consequences resulting from the use of
the information contained in this documentation.
F&S Elektronik Systeme reserves the right to make changes in its products or product
specifications or product documentation with the intent to improve function or design at any
time and without notice and is not required to update this documentation to reflect such
changes.
F&S Elektronik Systeme makes no warranty or guarantee regarding the suitability of its
products for any particular purpose, nor does F&S Elektronik Systeme assume any liability
arising out of the documentation or use of any product and specifically disclaims any and all
liability, including without limitation any consequential or incidental damages.
Products are not designed, intended, or authorised for use as components in systems
intended for applications intended to support or sustain life, or for any other application in
which the failure of the product from F&S Elektronik Systeme could create a situation where
personal injury or death may occur. Should the Buyer purchase or use a F&S Elektronik
Systeme product for any such unintended or unauthorised application, the Buyer shall
indemnify and hold F&S Elektronik Systeme and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, expenses, and
reasonable attorney fees arising out of, either directly or indirectly, any claim of personal
injury or death that may be associated with such unintended or unauthorised use, even if
such claim alleges that F&S Elektronik Systeme was negligent regarding the design or
manufacture of said product.

Flowcharts

F&S Secure Boot 39

