
F&S Documentation “Secure
Boot with i.MX HAB”

Documentation for the “F&S Secure Boot”

Version 1.4
(2025-09-29)

© F&S Elektronik Systeme GmbH
Untere Waldplätze 23

D-70569 Stuttgart
Germany

Phone: +49(0)711-123722-0
Fax: +49(0)711-123722-99

About This Document
This document is intended to explain the usage of the Secure Boot on F&S Boards.

Remark
The version number on the title page of this document is the version of the document.
It is not related to the version number of any software release.

How To Print This Document
This document is designed to be printed double-sided (front and back) on A4 paper.
If you want to read it with a PDF reader program, you should use a two-page layout
where the title page is an extra single page. The settings are correct if the page num-
bers are at the outside of the pages, even pages on the left and odd pages on the
right side. If it is reversed, then the title page is handled wrongly and is part of the first
double-page instead of a single page.

Typographical Conventions
We use different fonts and highlighting to emphasize the context of special terms:
File names

Menu entries

Board input/output

Program code

PC input/output

Listings

Generic input/output

Variables

8 9

Titlepage

F&S Secure Boot v

History
Date V Platform A,M,R Chapter Description Au
2017-01-27 1.0 Linux A All Initial document generation FB
2017-12-07 1.1 Linux M All Modify different chapters because of reworking the user tool PJ
2019-01-31 1.2 Linux M All Modify different chapters because of reworking the F&S Secure

Boot Tool
PJ

2020-02-10 1.3 Linux M All Update chapters to new code and reorder the structure PJ
2025-09-15 1.4 Linux M All Combined this document with Secure Boot for i.MX8M DD

V Version
A,M,R Added, Modified, Removed
Au Author

vi F&S Secure Boot

F&S Secure Boot vii

Table of Contents
1 Introduction 1

1.1 Boot Sequence ..1
1.2 Secure Boot Scope..2

2 F&S Secure Boot Quickstart Guide 4
2.1 Preparing the Host...4
2.2 Sign the images...4
2.3 Prepare the Board ...4
2.4 Close the Board...4

3 Secure Bootloaders 5
3.1 fsimx6, fsimx6ul and fsimx6sx ...5

3.1.1 Secure NBoot...5
3.1.2 Secure U-Boot..6
3.1.3 Build Secure U-Boot...7

3.2 fsimx8mm, fsimx8mn and fsimx8mp ...8
3.2.1 Secure U-Boot..8
3.2.2 Build Secure U-Boot...8
3.2.3 Secure NBoot...9
3.2.4 Build Secure NBoot..9

Getting the DRAM Firmware ..9
Building the ATF ...10

3.2.5 Images with OP-TEE Support ..10

4 Secure Boot on F&S Boards 13
4.1 Configure your host computer ...13
4.2 Get the tools and packages...13
4.3 Release Content..13
4.4 Install Content..15
4.5 Encrpyt/Sign Images ...17

4.5.1 Signed Images ...17
4.5.2 Encrypted Images ..18

5 F&S Secure Boot Tool usage 19
5.1 Creating Certificates ..19

viii F&S Secure Boot

5.2 Signing an image...23
5.3 Encrypting an image..24
5.4 Creating a JTAG response key ...28
5.5 Using custom settings ...29
5.6 Advanced F&S Secure Boot Tool usage ...32

6 Setting up a new board 34
6.1 Preconditions...34
6.2 Install secure images...34
6.3 fsimx6, fsimx6ul, fsimx6sx ...34

6.3.1 Burn SRK Hash..34
6.3.2 Set JTAG mode..36
6.3.3 Enable Secure Boot ...39
6.3.4 Dek blob creation ...40

6.4 fsimx8mm, fsimx8mn, fsimx8mp ...42
6.4.1 Burn SRK Hash..42

6.5 Enable Secure Boot...43

7 Flowcharts 44
7.1 Create certificates and burn SRK hash ...44
7.2 Sign an image..45
7.3 Encrypt an image...46

List of Figures 47
List of Tables 47
Listings 47
Important Notice 47

Introduction

F&S Secure Boot 1

1 Introduction
This document is intended to describe the usage of the F&S implementation of Se-
cure Boot. The F&S Secure Boot package contains some binaries and precompiled
images. There is also a so called F&S Secure Boot Tool. This Tool is able to:
 create certificates (used for signing an image)
 sign an image (create unique hash sum for a specific memory range)
 encrypt an image (encrypt a specific memory range with a key)
 create a JTAG response key

The F&S Secure Boot Tool is a collection of shell scripts, which perform their individ-
ual task (i.e. create certificates, sign an image, encrypt an image or create a JTAG
response key).

1.1 Boot Sequence

Figure 1 shows the typical boot sequence of the board.

Figure 1: Boot sequence

Introduction

2 F&S Secure Boot

Let us go through each step one by one, starting at the bottom.
1. The ROM-Loader is code that is located in a ROM inside of the chip. It is usu-

ally capable of loading some piece of code from a boot device (NAND flash,
SD card, or similar). However at this point of time the dynamic RAM (D-RAM)
is not yet initialized. The chip does not even know if there is any D-RAM at-
tached at all. So it can only load this code to some rather small internal RAM
(IRAM). A regular U-Boot bootloader with more than 500KB will not fit in there.
This means we need a smaller step-stone loader first, which is called NBoot
on F&S systems. This step-stone loader is loaded to IRAM and then executed

2. NBoot (short for NAND-Boot), or the SPL (short for secondary program load-
er), are rather small step-stone bootloaders. They detect and activate the D-
RAM and then loads the main bootloader. While the NBoot on fsimx6/ul/sx is
the actual Program that is run, on fsimx8mm/mn/mp the NBoot is a Container
that includes the SPL. On fsimx6/ul/sx, as long as NBoot is on the board, the
Linux system can be re-installed at any time without the need of special soft-
ware or hardware tools. When erasing the memory, NBoot is supposed to stay
on the board. Please note that despite it being named NAND-Boot, it also
supports Boards with eMMC Storage.

3. U-Boot is the main bootloader. It is used to load and execute the Linux kernel
and the device tree. It is also used to install the Linux images and to configure
the boot procedure.

4. The Linux kernel provides the Linux operating system including the device
drivers. It will activate the peripherals and finally mounts the root filesystem.

5. The root filesystem contains the code for the init process and all the Userland
software. The init process will finalize the boot process, for example it will start
the background services, the GUI and probably the main application.

With the F&S Secure Boot package you are able to sign/encrypt the following stages:

• NBoot

• U-Boot

• Linux Kernel (and the device tree)

1.2 Secure Boot Scope
The Goal of Secure Boot is to harden the System against attacks during Boot. For
this it is necessary to secure the following Images

- NBoot
- U-Boot
- Linux Kernel
- Linux Devicetree

To achieve a Secure Boot, we use NXPs “High Assurance Boot”. This allows us to
sign Images and prohibit the system from booting Images that can not be verified.

Introduction

F&S Secure Boot 3

Please note that this does not mean that a system is safe from any attack. The run-
time integrity needs to be taken into account to but is out of scope for a regular se-
cure boot process.

F&S Secure Boot Quickstart Guide

4 F&S Secure Boot

2 F&S Secure Boot Quickstart Guide
The Quickstart Guide is not meant to substitute the rest of this document. It is advised to first
read the document to get a feel for the Software and understand the different components
used to secure a Board.. This Guide will go through the necessary steps to sign the precom-
piled Binaries with the F&S Secure Boot Tool, flash them to the Board and activate Secure
Boot permanently on that Board. It will also reference the Chapters with the necessary Infor-
mations.

2.1 Preparing the Host
- Unpack the F&S Secure Boot release
- Use the setup script
- Download NXPs Code Signing Tool
- Set CST_DIR

2.2 Sign the images
- Enter the F&S Secure Boot Tool
- Use generate.sh to create Certificates
- Use generate.sh to sign the NBoot and UBoot from the binaries directory
- Use generate.sh to sign your Linux Kernel and Devicetree

2.3 Prepare the Board
- Install your signed NBoot
- Reset
- Install your signed U-Boot
- Save your signed Linux and Devicetree
- Reset
- Check for HAB Events

2.4 Close the Board
- Burn SRKHash.txt to the fuses
- Reset
- Check for HAB Events
- Close the Board
- Reset

Secure Bootloaders

F&S Secure Boot 5

3 Secure Bootloaders
Since there are differences between Image Types in NBoot and U-Boot between the armv7
platforms (fsimx6, fsimx6ul and fsimx6sx) and the armv8 platforms (fsimx8mm, fsimx8mn
and fsimx8mp)y there are split chapters on these.

3.1 fsimx6, fsimx6ul and fsimx6sx
On the armv7 platforms both the NBoot and the U-Boot are binary programs that are run on
the system.

3.1.1 Secure NBoot

The secure NBoot is only available as a binary. The source code will not published.
Below there is a table which commands are in NBoot available.

NBoot VS (Secure) Commands
Menu

\r re-display menu
\n re-display menu
? Show some of the most important commands
E Erase whole flash, excluded NBoot
r Reboot hardware
d Serial Download of bootloader
D Serial Download of bootloader
f2 Save image to flash
l2 Loading installed bootloader image (UBoot/EBoot)
L2 Loading installed bootloader image (NBoot)
x2 execute image
c Load EBoot/U-Boot from SD card (not implemented yet)
B Show bad blocks
N Load NBoot from SD card (not implemented yet)

Secure Bootloaders

6 F&S Secure Boot

. Show fuses menu
Fuses Menu

11 Blow fuses to boot from NAND (only allowed if board is in open mode)
71 Blow fuses Serial Number (only allowed if board is in open mode) and lock

serial number
81 Enable Watchdog (only allowed if board is in open mode)
R3 Revoke SRK
s1 dump secure fuses: Security Configuration, SRK-Revoke, JTAG Mode,

*SRK-HASH
S1 Set SRK-HASH (only allowed if board is in open mode) and lock SRK
J1 Set JTAG mode fuse, if necessary JTAG responsible key too and lock JTAG
l1 HAB Status and Event logging
B1 Set Boot Security Settings (only allowed if board is in open mode)

Table 1: NBoot VS commands

1 only allowed if board is in open mode
2 Images will be verified
3 If in closed mode only available if CSF is set with feature [Unlock] – Engine =
OCOTP, Features = SRK Revoke

3.1.2 Secure U-Boot

The secure U-Boot is available as a binary and in source code. You can find it in the
release archive.
The U-Boot has implemented the authentication mechanism. Below is listed when an
image will be authenticated.

• If one of the following NAND partitions will be written with the “nand write”

command, the images will be verified. Partitions: UBoot, Kernel, FDT and Im-

ages.

• If the boot command is executed the images will be verified.

Supported Image types:

• UBoot

• zImage

Secure Bootloaders

F&S Secure Boot 7

• Device-Trees

3.1.3 Build Secure U-Boot

To build the Secure U-Boot change to extracted U-Boot folder
[dev@vm ~] cd u-boot-<version>-fssecure-V<year>.<month>

After that setup the correct secure defconfig.
[dev@vm u-boot-<version>-fssecure-V<year>.<month>]$ make
<arch>_secure_boot_defconfig

Where <arch> can be fsimx8mm, fsimx8mn or fsimx8mp.

Now the correct defconfig is setup and we can build the U-Boot image.
[dev@vm u-boot-<version>-fssecure-V<year>.<month>]$ make

The output image is called u-boot.bin and can be signed now.

Note:
F&S has implement the verification process to U-Boot, but that doesn´t means the whole U-
Boot is secure. The access e.g. to write the memory and registers are farther granted. So the
user have to check his requirements and setup the U-Boot by himself. We recommend pre-
venting access to the U-Boot.

Secure Bootloaders

8 F&S Secure Boot

3.2 fsimx8mm, fsimx8mn and fsimx8mp
On the armv8 platforms the NBoot is a container that includes Board configuration, Early
Bootloaders that will be run and DRAM-Configuration. The U-Boot is a binary programs that
are run on the system.

3.2.1 Secure U-Boot

The secure U-Boot is available as a binary and in source code. You can find it in the
release archive.
The U-Boot has implemented the authentication mechanism. Below is listed when an
image will be authenticated.

• If the Secure Images are written with the “fsimage save” command, the im-

ages will be verified.

• If the boot command is executed the images will be verified.

3.2.2 Build Secure U-Boot

To build the Secure U-Boot change to extracted U-Boot folder
[dev@vm ~]$ cd u-boot-<version>-fssecure-V<year>.<month>

After then setup the correct secure defconfig.
[dev@vm u-boot-<version>-fssecure-V<year>.<month>]$ make
<arch>_secure_boot_defconfig

Where <arch> can be fsimx8mm, fsimx8mn or fsimx8mp.

Now the correct defconfig is setup and we can build the U-Boot image.
[dev@vm u-boot-<version>-fssecure-imx8m-V<year>.<month>]$ make

The output image is called uboot.fs

Note:
F&S has implemented the verification process to U-Boot, but that doesn´t mean the whole U-
Boot is secure. The access e.g. to write the memory and registers are further granted. So the
user has to check his requirements and setup the U-Boot by himself. We recommend pre-
venting access to the U-Boot.

Secure Bootloaders

F&S Secure Boot 9

3.2.3 Secure NBoot

The secure N-Boot is available as a binary and in source code. You can find it in the
release archive.
The Security Feature of the N-Boot are integrated into the SPL. The SPL will try to
authenticate the following parts of the N-Boot.

• Board Configuration File

• D-RAM Settings

• D-RAM Timings

• ATF

Additionally it will try to verify the U-Boot.

3.2.4 Build Secure NBoot

Building the Secure N-Boot yourself requires more steps than the secure U-Boot.
Since the N-Boot is made of several Images. Most of these files are already part of
the u-boot repository. Some files, especially the firmware files need to be build by
yourself.

Getting the DRAM Firmware
To get the DRAM Firmware, it must be downloaded from NXPs firmware release. For
this open an Terminal and write
[dev@vm ~]$ wget
http://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.10.1.bin

This will download the firmware as an executable binary. First you need to change its
permissions, then execute the file.

[dev@vm ~]$ chmod 755 firmware-imx-8.10.1.bin

[dev@vm ~]$./firmware-imx-8.10.1.bin

Secure Bootloaders

10 F&S Secure Boot

Now there is a directory with the same name, enter the following path and copy all
files to the NXP-Firmware directory.
[dev@vm ~]$ cd firmware-imx-8.10.1/firmware/ddr/synopsys

[dev@vm synopsys]$ cp * <u-boot source>/board/F+S/NXP-Firmware/

Building the ATF
To build the ATF change to extracted ATF folder
[dev@vm ~]$ cd atf-f+s-V<year>.<month>

And execute
[dev@vm atf-f+s-V<year>.<month>]$ make bl31 PLAT=<processor>

Where <processor> can be imx8mm, imx8mn or imx8mp.

The ATF Image will be under build/<processor>/release/bl31.bin. Copy it into your u-
boot directory to board/F+S/NXP-Firmware/bl31-<processor>.bin.
Now go to the u-boot directory
[dev@vm ~]$ cd u-boot-<version>-fssecure-V<year>.<month>

After setup the correct secure defconfig if you did not do it already.
[dev@vm u-boot-<version>-fssecure-V<year>.<month>]$ make
<arch>_secure_boot_defconfig

Where <arch> can be fsimx8mm, fsimx8mn or fsimx8mp.

Now the correct defconfig is setup and we can build the N-Boot image.
[dev@vm u-boot-<version>-fssecure-V<year>.<month>]$ make nboot

3.2.5 Images with OP-TEE Support

To use op-tee the ATF needs to be recompiled. Change into its directory,
[dev@vm ~]$ cd atf-f+s-V<year>.<month>

Secure Bootloaders

F&S Secure Boot 11

It is advised to clean the ATF source code before rebuilding it, since some changes
may not be applied when rebuilding from an unclean source. For this write
[dev@vm atf-f+s-V<year>.<month>]$ make distclean

And rebuild with
[dev@vm atf-f+s-V<year>.<month>]$ make bl31 PLAT=<processor>
SPD=opteed

Where <processor> can be imx8mm, imx8mn or imx8mp.

Copy the new bl31.bin like shown into chapter 1.3.1.2.
Now change into the op-tee directory.
[dev@vm ~]$ cd op-tee-f+s-V<year>-<month>

There you build the optee binary with the command
[dev@vm op-tee-f+s-V<year>-<month>]$ make PLAT=imx

PLATFORM_FLAVOR=<arch> CFG_DDR_SIZE=0x<amount in hexadecimal>

Where <arch> can be fsimx8mm, fsimx8mn or fsimx8mp.
CFG_DDR_SIZE can be omitted, since it tells OP-TEE legal DRAM ranges to accept
from the Linux Kernel, which will allocate according to the real DRAM on the System.

Copy the resulting Image from op-tee-f+s-V<year>-<month>/out/arm-plat-
imx/core/tee.bin to the u-boot to board/F+S/NXP-Firmware/tee-<processor>.bin.
Where <processor> can be imx8mm, imx8mn and imx8mp.

Now go into the U-Boot directory

[dev@vm ~]$ cd u-boot-<version>-fssecure-V<year>.<month>

After set the secure boot defconfig with op-tee support
[dev@vm u-boot-<version>-fssecure-V<year>.<month>]$ make
<arch>_secure_boot_optee_defconfig

Where <arch> can be fsimx8mm, fsimx8mn or fsimx8mp.

Secure Bootloaders

12 F&S Secure Boot

Now the correct defconfig is setup and we can build the U-Boot and N-Boot image.
The get the Images with op-tee support.
[dev@vm u-boot-<version>-fssecure-V<year>.<month>]$ make

And build the N-Boot
[dev@vm u-boot-<version>-fssecure-V<year>.<month>]$ make nboot

And U-Boot

[fs-dev@localhost u-boot-<year>-fssecure-V<year>.<month>]$ make

Please make sure you installed both images before resetting the board.

Secure Boot on F&S Boards

F&S Secure Boot 13

4 Secure Boot on F&S Boards

4.1 Configure your host computer
In order to configure your computer properly (in order to use F&S software) please
refer to the “Linux on F&S Boards” guide provided by F&S Elektronik Systeme. After
you have done this, continue with this guide.
It is crucial that you install the packages “GNU objcopy” version 2.15 or high-
er” and “OpenSSL” 1.10 or higher provided from Fedora standard repositories.

4.2 Get the tools and packages
First of all, download the F&S Secure Boot package from the F&S website and get
the Code Signing Tool (CST) from NXPs website. The tested version of the CST is
“3.3.1”. We recommend you to use this version, older or newer versions may also
work but are not tested.

4.3 Release Content
These tar archive is compressed with bzip2. So to see the files, you first have to un-
pack the archive. For this you can either us the setup script or do it by hand.
tar xvf fs-secure-boot-V<year>.<month>.tar.bz2

This will create a directory fs-secure-boot-<YEAR>.<MONTH> that contains all
the files of the release, except the CST.
They often use a common naming scheme:

<package>-<YEAR>.<MONTH>.<extension>

With the following meaning:
<package>................................... The name of the package (e.g. fs-secure-boot).
<year>.<month>.......................... The year and month of the release (e.g. 2019.02)
<extension>.............................. The extension of the package (e.g. .bin, .tar.bz2,

etc.). Please note that some file types do not have
an extension, for example the zImage file of the
Linux kernel.

Secure Boot on F&S Boards

14 F&S Secure Boot

The following table lists the files that you get after unpacking the release archive.
Directory Description

/ Top Directory
Readme.txt Release information

setup-fs-secure-boot
Script to unpack F&S Secure Boot
source packages to a build directory

binaries/fsimx6/ Images to be used with a fsimx6 board
directly

nbootimx6_secure_<v>.bin NBoot fsimx6 secure bootloader image

u-boot-secure-fsimx6.bin U-Boot fsimx6 secure image without
padding

binaries/fsimx6sx/ Images to be used with a fsimx6sx board
directly

nbootimx6sx_secure_<v>.bin NBoot fsimx6sx secure bootloader image

u-boot-secure-fsimx6sx.bin U-Boot fsimx6sx secure image without
padding

binaries/fsimx6ul/ Images to be used with a fsimx6sx board
directly

nbootimx6ul_secure_<v>.bin NBoot fsimx6ul secure bootloader image
for NAND Boards

nbootimx6ul_mmc_secure_<v>.bin NBoot fsimx6ul secure bootloader image
for mmc Boards

u-boot-secure-fsimx6ul.bin U-Boot fsimx6ul secure image without
padding

binaries/fsimx8mm/ Images to be used with a fsimx8mm
board directly

nboot-fsimx8mm-secure.fs NBoot fsimx8mm secure bootloader im-
age

nboot-fsimx8mm-secure-optee.fs NBoot fsimx8mm secure bootloader im-
age with basic op-tee support

uboot-fsimx8mm-secure.fs U-Boot Image for fsimx8mm

nboot-fsimx8mm-secure-optee.fs U-Boot Image for fsimx8mm with basic
op-tee support

binaries/fsimx8mn/ Images to be used with a fsimx8mn
board directly

Secure Boot on F&S Boards

F&S Secure Boot 15

nboot-fsimx8mn-secure.fs NBoot fsimx8mn secure bootloader im-
age

nboot-fsimx8mn-secure-optee.fs NBoot fsimx8mn secure bootloader im-
age with basic op-tee support

uboot-fsimx8mn-secure.fs U-Boot Image for fsimx8mn

nboot-fsimx8mn-secure-optee.fs U-Boot Image for fsimx8mn with basic
op-tee support

binaries/fsimx8mp/ Images to be used with a fsimx8mp
board directly

nboot-fsimx8mp-secure.fs NBoot fsimx8mp secure bootloader im-
age

nboot-fsimx8mp-secure-optee.fs NBoot fsimx8mp secure bootloader im-
age with basic op-tee support

uboot-fsimx8mp-secure.fs U-Boot Image for fsimx8mm

nboot-fsimx8mp-secure-optee.fs U-Boot Image for fsimx8mm with basic
op-tee support

/sources Configurations and sources
u-boot-<version>-fssecure-
V<year>.<month>.tar.bz2 U-Boot secure source code

fs-secure-boot-tool-
V<year>.<month>.tar.bz2 F&S Secure Boot Tool source code

doc/ Documentation
FS_Secure_Boot.pdf F&S Secure Boot document

Table 2: Content of the created release directory

4.4 Install Content
The source code packages are located in the sources subdirectory of the release
archive. We will assume that you want to create a separate build directory where you
extract the source code and build all the software. The easiest way is to extract U-
Boot and F&S Secure Boot Tool next to each other, so that the top directories of their
source trees are siblings.
We have prepared a shell script called setup-fs-secure-boot that does this in-
stallation automatically. Just call it when you are in the top directory of the release
and give the name of the build directory as argument.

Secure Boot on F&S Boards

16 F&S Secure Boot

cd <release-dir>

./setup-fs-secure-boot <target-dir>

Add option --dry-run if you want to check first what this command will do. Then
only a list of actions will be output but no actual changes will take place. For further
information simply call
./setup-fs-secure-boot –help

Note:
Option --dry-run was introduced in release fs-secure-boot-tool-2019.02. In older
versions you also had to create the target build directory by hand before calling the
script.

If you prefer to do the installation by hand, well, the script more or less executes the
following commands, just with some more checks and directory switching.
mkdir <build-dir>

tar xf u-boot-<version>-fssecure-V<year>.<month>.tar.bz2

tar xf fs-secure-boot-tool-V<year>.<month>.tar.bz2

After you got both tools, make sure to export an environment variable called
CST_DIR. This variable is necessary because here you setup the path to the corre-
sponding CST directory. Be sure that the path to the directory ends with and /.
[dev@vm ~]$ export CST_DIR=/home/dev/release/

[dev@vm ~]$ echo $CST_DIR

/home/dev/release/

Note:
F&S Elektronik Systeme tested the F&S Secure Boot Tool and the CST on a Fedora 36 ma-
chine. We do not test other linux distributions neither does the F&S Secure Boot Tool run
under Windows.

Secure Boot on F&S Boards

F&S Secure Boot 17

4.5 Encrpyt/Sign Images
F&S support different kind of images which can be signed or encrypted. Here is a list
which images can be signed or encrypted:

• NBoot Images

• UBoot Images

• zImages

• Device Tree Images

4.5.1 Signed Images

Here is a small overview which parts of the images will be signed by default.

Image Types Signed areas
Offset Length

NBoot Images1

(6,6sx, 6ul)
0x0
0x14

0x10
end of Image

NBoot-sub Images2

(8mm, 8mn, 8mp)
0x0 end of Image

U-Boot Images 0x0 end of Image
zImages 0x0 end of Image
Device Tree 0x0 end of Image
1 There are 4 Bytes in NBoot which will dynamically setup while transferring it. So that´s the reason
why these 4 Bytes can´t be signed.
2 Certain F&S Headers that group Images are not signed. Each sub Image that is loaded is
checked individually during boot.

Secure Boot on F&S Boards

18 F&S Secure Boot

4.5.2 Encrypted Images

Here is a small overview which parts of the images will be signed by default.

Image Types Signed areas Encrypted areas
Offset Length Offset Length

NBoot Images12

(6, 6ul, 6sx)
0x0
0x14

0x10
0x41c

0x430 end of Image

U-Boot Images3

(6, 6ul, 6sx)
0x0 0x80 0x80 end of Image

zImages4 0x0 0x68 0x68 end of Image
Device Tree5 0x0 0x68 0x68 end of Image
1 There are 4 Bytes in NBoot which will dynamically setup while transferring it. So that´s the reason
why these 4 Bytes can´t be signed.
2 The signing goes from beginning of the Image to the IVT and Boot Data Header. Everything else is
encrypted.
3 The signing goes from beginning of the Image to the Magic Number of the UBoot. Everything else is
encrypted.
4 The signing goes from beginning of the Image to the Magic Number of the zImage. Everything else is
encrypted.
5 The signing goes from beginning of the Image to the whole header of the Image. Everything else is
encrypted.

F&S Secure Boot Tool usage

F&S Secure Boot 19

5 F&S Secure Boot Tool usage
In this chapter the general usage of the F&S Secure Boot Tool is illustrated.

5.1 Creating Certificates
First of all we need to open a terminal (preferably bash). After the terminal started
navigate to the F&S Secure Boot Tool directory using the “cd” command.
cd "path_to_fs-secure-boot-tool-V<year>.<month>"

When you entered the directory, execute the “generate.sh” script.
./generate.sh

Press 'c' and 'enter' in order to create the certificates. After that, you have to enter a
serial number and a passphrase. Use the recommended setting for the certificates:
 create a new CA (certificate authority) key

 key length in bits for PKI tree is 2048

 PKI (Public Key Infrastructure) tree duration is 5 years (doesn't matter if it ex-

pires)

 SRKs (Super Root Keys) are generated as CA keys

Creating certificates:
[dev@vm fs-secure-boot-tool-V<year>.<month>]$./generate.sh

Do you want to create certificates, create jtag response key, sign
an image or encrypt an image (c/j/s/e)?

Note: When an image is encrypted it´s also signed!

c

Please enter a serial number (8 digits!):12345678

Please enter a passphrase (no blanks!):FS_Elektronik

F&S Secure Boot Tool usage

20 F&S Secure Boot

Note:
These are sample inputs, you want to use your own specifications.
Creating the SRKs (super root keys) as CA (certificate authority) certificates is recommen-
ded. Not all NXP CPUs including HAB (high assurance boot) support SRKs as non CA certi-
ficates. Furthermore using a different key length isn't recommended. NBoot doesn't support a
greater value yet.
Also the Elliptic Curve Cryptography and fast authentication tree isn't tested yet.

After this, the “hab4_pki_tree.sh” script developed by NXP is called. Please refer
to the “CST_UG.pdf” for more information about this script and about the sign-
ing/encryption process. Below is an example configuration.
 +++

 This script is a part of the Code signing tools for Freescale's

 High Assurance Boot. It generates a basic PKI tree. The PKI

 tree consists of one or more Super Root Keys (SRK), with each

 SRK having two subordinate keys:

 + a Command Sequence File (CSF) key

 + Image key.

 Additional keys can be added to the PKI tree but a separate

 script is available for this. This this script assumes openssl

 is installed on your system and is included in your search

 path. Finally, the private keys generated are password

 protectedwith the password provided by the file key_pass.txt.

 The format of the file is the password repeated twice:

 my_password

 my_password

 All private keys in the PKI tree are in PKCS #8 format will be

 protected by the same password.

 +++

Do you want to use an existing CA key (y/n)?: n

Do you want to use Elliptic Curve Cryptography (y/n)?: n

Enter key length in bits for PKI tree: 2048

Enter PKI tree duration (years): 5

How many Super Root Keys should be generated? 4

F&S Secure Boot Tool usage

F&S Secure Boot 21

Do you want the SRK certificates to have the CA flag set? (y/n)?:
y

+++++++++++++++++++++++++++++++++++++

+ Generating CA key and certificate +

+++++++++++++++++++++++++++++++++++++

++

+ Generating SRK key and certificate 1 +

++

++

+ Generating CSF key and certificate 1 +

++

++

+ Generating IMG key and certificate 1 +

++

++

+ Generating SRK key and certificate 2 +

++

++

+ Generating CSF key and certificate 2 +

++

++

F&S Secure Boot Tool usage

22 F&S Secure Boot

+ Generating IMG key and certificate 2 +

++

++

+ Generating SRK key and certificate 3 +

++

++

+ Generating CSF key and certificate 3 +

++

++

+ Generating IMG key and certificate 3 +

++

++

+ Generating SRK key and certificate 4 +

++

++

+ Generating CSF key and certificate 4 +

++

++

+ Generating IMG key and certificate 4 +

++

Certificate(s) sucessfully created

F&S Secure Boot Tool usage

F&S Secure Boot 23

checksum is: 4278

srkhash.txt is ready!

After the certificates are generated, the F&S Secure Boot Tool outputs a text file
called srkhash.txt. This file contains a checksum and the hash value (which are
meant to be burned into the fuses).

Note:
You can only create once certificates. If you have done something wrong delete the CST and
unpack it again.
When you want to use several keys for different products then you have to create several
CST folder to handle the keys.

If you want to verify the values to fuse to your board you can format your
“SRK_fuse.bin” from your CSTs crts/ directory. Use the following command for the
values. These Values should be the same as the ones proposed by the fusing com-
mands.
[dev@vm fs-secure-boot-tool-V<year>.<month>]$ hexdump -e '/4 "0x"'
-e '/4 "%X""\n"' < SRK_1_2_3_4_fuse.bin

5.2 Signing an image
Again, execute the “generate.sh” script. After that press 's', 'enter' and 'd', 'enter'.
You will be reeted with an enumeration of CPU architectures. Select the architecture
that suits your board by pressing '1', '2', '3', ‘4’ or ‘5’ and 'enter'.
[dev@vm fs-secure-boot-tool-V<year>.<month>]$./generate.sh

Do you want to create certificates, create jtag response key, sign
an image or encrypt an image (c/j/s/e)?

Note: When an image is encrypted it´s also signed!

s

Do you want to use the default or custom settings (d/c)?

d

1) FSIMX6SDQ

2) FSIMX6SX

3) FSIMX6UL

4) FSIMX6ULL

5) FSVYBRID

F&S Secure Boot Tool usage

24 F&S Secure Boot

6) FSIMX8MM

7) FSIMX8MN

8) FSIMX8MP

#? 1

Now you need to enter the path (absolute path!) to the image you want to sign and
press 'enter'.
Enter image path (absolute path!)

/home/fs-dev/u-boot.bin

Signed image (uboot_sdq_signed.nb0) successfully generated.

Now the signed image (in this example the signed U-Boot
“uboot_sdq_signed.nb0”) is created and is placed in the subdirectory bin/ of
your current directory.
[dev@vm fs-secure-boot-tool-V<year>.<month>]$ ls

bin/ encryptImage.sh* README.txt

boot_raw generate.sh* release/

boot_raw_edited History-F+S-UserTool.txt signImage.sh*

createCertificates.sh* jtag.sh* srkhash.txt

cst-3.2.0.tgz makeAction.sh*

Repeat this with all images (except the root file system).

5.3 Encrypting an image
At the moment we only support OTPMK as master key.
Execute the “generate.sh” script. After that enter 'e', 'enter' and 'd', 'enter'. You will
be greeted with an enumeration of CPU architectures. Select the architecture you
have on your board by pressing '1', '2', '3', '4' or ‘5’ and 'enter'.

F&S Secure Boot Tool usage

F&S Secure Boot 25

[dev@vm fs-secure-boot-tool-V<year>.<month>]$./generate.sh

Do you want to create certificates, create jtag response key, sign
an image or encrypt an image (c/j/s/e)?

Note: When an image is encrypted it´s also signed!

e

Do you want to use the default or custom settings (d/c)?

d

1) FSIMX6SDQ

2) FSIMX6SX

3) FSIMX6UL

4) FSIMX6ULL

5) FSVYBRID

#? 1

Now you need to enter the path to the image (absolute path!) you want to encrypt
and press 'enter'. After you have done this, you need to enter the key length
(128/192/256 bits).
Enter image path (absolute path!)

/home/fs-dev/u-boot.bin

Enter key length (128/192/256):

256

Insert key

The F&S Secure Boot Tool asks you for your key “Insert key”. Before we can do this,
we need to generate the key (so called dek blob) on the board. The private key called
dek.bin was created by the tool and automatically copied to the /tftpboot folder.

After entering the U-Boot, transfer the “dek.bin” to the board using tftp and generate
the key by running:
U-Boot 2014.07-ga8061e6 (Dec 07 2017 – 09:25:44) for F&S

CPU: Freescale i.MX6DL rev1.3 at 792 MHz

RESET: POR

Board: efusA9 Rev. 1.20 (LAN, eMMC, 2x DRAM)

DRAM: 512 MiB

F&S Secure Boot Tool usage

26 F&S Secure Boot

NAND: 256 MiB

MMC: FSL_SDHC: 0, FSL_SDHC: 1

In: serial

Out: serial

Err: serial

Net: FEC [PRIME]

USB EHCI 1.00

Hit any key to stop autoboot: 0

efusA9 # tftp dek.bin

Using FEC device

TFTP from server 10.0.0.109; our IP address is 10.0.0.252

Filename ‘dek.bin’.

Load address: 0x10800000

Loading:

 *

 2.9 KiB/s

done

Bytes transferred = 32 (0x20)

efusA9 # dek_blob $loadaddr 0x10800100 256

SEC: RNG instantiated

Encapsulating provided DEK to form blob

DEK Blob

8100584166552000CC526D82F83EB075FF0228052EA1B3E2E502F436B142CDE30F
08053DD00C4397DCCB3E2DBC350260A46BC3EDC07E15A5538DFA9FFAF9C6B64902
35D332CFEE6B8E9B9B4F22B5C7F2CA081466553C03EB

efusA9 #

The key in the red box is the key we need to attach to the image. This is done by
marking the key and copy it into the terminal where the F&S Secure Boot Tool is cur-
rently running and hit 'enter'.
Enter key length (128/192/256):

256

Insert key

F&S Secure Boot Tool usage

F&S Secure Boot 27

8100584166552000CC526D82F83EB075FF0228052EA1B3E2E502F436B142CDE30F
08053DD00C4397DCCB3E2DBC350260A46BC3EDC07E15A5538DFA9FFAF9C6B64902
35D332CFEE6B8E9B9B4F22B5C7F2CA081466553C03EB

Encrypted image (uboot_sdq_enc_otpmk.nb0) successfully generated.

Note:
Your generated key looks different! This is just a sample key. Furthermore from time to time
the key won't generate on the board (means there is no key outputted). The best practice is
to perform a hardware reset and try again.

Below is the full example output log again.
[dev@vm fs-secure-boot-tool-V<year>.<month>]$./generate.sh

Do you want to create certificates, create jtag response key, sign
an image or encrypt an image (c/j/s/e)?

Note: When an image is encrypted it´s also signed!

e

Do you want to use the default or custom settings (d/c)?

d

1) FSIMX6SDQ

2) FSIMX6SX

3) FSIMX6UL

4) FSIMX6ULL

5) FSVYBRID

#? 1

Enter image path (absolute path!)

/home/fs-dev/u-boot.bin

Enter key length (128/192/256):

256

Insert key

8100584166552000CC526D82F83EB075FF0228052EA1B3E2E502F436B142CDE30F
08053DD00C4397DCCB3E2DBC350260A46BC3EDC07E15A5538DFA9FFAF9C6B64902
35D332CFEE6B8E9B9B4F22B5C7F2CA081466553C03EB

Encrypted image (uboot_sdq_enc_otpmk.nb0) successfully generated.

Now, the encrypted image is ready and is placed in the subdirectory bin/ of your
current directory.

F&S Secure Boot Tool usage

28 F&S Secure Boot

Note:
Since the CST from NXP uses the “/dev/random” device, it can take some time until the im-
ages are encrypted.

Note:
Encryption is not possible with the NBoot for fsimx8mm, fsimx8mn and fsimx8mp

5.4 Creating a JTAG response key
If you want to setup the JTAG mode to secure then you have to create a JTAG re-
sponse key. Execute the “generate.sh” script. After that enter ‘j’, ‘enter’ and then en-
ter the JTAG response key 7 Bytes and Little-Endian.
[dev@vm fs-secure-boot-tool-V<year>.<month>]$./generate.sh

Do you want to create certificates, create jtag response key, sign
an image or encrypt an image (c/j/s/e)?

Note: When an image is encrypted it´s also signed!

j

Please enter the response key (7 Bytes) (Little-Endian) and con-
firm it with enter

123456789abcde

checksum is: 840

jtag_resp_key.txt is ready!

Now the JTAG response key called jtag_resp_key.txt is created and is placed
in the current directory.

F&S Secure Boot Tool usage

F&S Secure Boot 29

5.5 Using custom settings
Creating certificates
Since we at F&S Elektronik Systeme can't distribute the CST (developed from NXP)
we can't feature default settings for the certification generation. But we highly rec-
ommend using the following settings:
 create a new CA (certificate authority) key
 key length in bits for PKI tree is 2048
 PKI (public key infrastructure) tree duration is 5 years (doesn't matter if it ex-

pires)
 SRKs (super root keys) are generated as CA keys

Note:
Creating the SRKs as CA certificates is recommended. Not all NXP CPUs including HAB
support SRKs as non CA certificates. Furthermore using a different key length isn't recom-
mended. NBoot doesn't support a greater value yet. Furthermore NBoot doesn't support keys
larger than 2048 yet.

Signing an image
The steps are fairly the same as when you use the default settings. The only thing
that changes is that enter an output name and the load address (in hexadecimal).

Note:
The load address is entered without the leading '0x'.

 [dev@vm fs-secure-boot-tool-V<year>.<month>]$./generate.sh

Do you want to create certificates, create jtag response key, sign
an image or encrypt an image (c/j/s/e)?

Note: When an image is encrypted it´s also signed!

e

Do you want to use the default or custom settings (d/c)?

c

Enter output name:

my_output_binary.bin

Enter Loadaddress (Hex):

Note: Type your Loadaddress without 0x at the beginning!

F&S Secure Boot Tool usage

30 F&S Secure Boot

10800000

1) FSIMX6SDQ

2) FSIMX6SX

3) FSIMX6UL

4) FSIMX6ULL

5) FSVYBRID

#? 1

Enter image path (absolute path!)

/home/fs-dev/u-boot.bin

Signed image (my_output_binary.bin) successfully generated.

Encrypting an image
The steps are fairly the same as when you use the default settings. The only differ-
ence is, that you enter an output name and the load address (in hexadecimal).

Note:
The load address is entered without the leading '0x'.

[dev@vm fs-secure-boot-tool-V<year>.<month>]$./generate.sh

Do you want to create certificates, create jtag response key, sign
an image or encrypt an image (c/j/s/e)?

Note: When an image is encrypted it´s also signed!

e

Do you want to use the default or custom settings (d/c)?

c

Enter output name:

my_output_binary.bin

Enter Loadaddress (Hex):

Note: Type your Loadaddress without 0x at the beginning!

10800000

1) FSIMX6SDQ

2) FSIMX6SX

3) FSIMX6UL

F&S Secure Boot Tool usage

F&S Secure Boot 31

4) FSIMX6ULL

5) FSVYBRID

#? 1

Enter image path (absolute path!)

/home/fs-dev/u-boot.bin

Enter key length (128/192/256):

256

Insert key

8100584166552000CC526D82F83EB075FF0228052EA1B3E2E502F436B142CDE30F
08053DD00C4397DCCB3E2DBC350260A46BC3EDC07E15A5538DFA9FFAF9C6B64902
35D332CFEE6B8E9B9B4F22B5C7F2CA081466553C03EB

Encrypted image (my_output_binary.bin_enc_otpmk) successfully gen-
erated.

F&S Secure Boot Tool usage

32 F&S Secure Boot

5.6 Advanced F&S Secure Boot Tool usage
Instead of calling “genereate.sh”, you can call “makeAction.sh” and give this script
the transfer parameters.
Available parameters:

--outputoutput name
--cpu ..CPU architecture
--actioncreate certificates, sign image or encrypt image
--image-pathabsolute image path
--key-lengthkey length in bits
--master-keymaster key otpmk
--jtag-resp-keyjtag responsible key
--cst-dirabsolute path to the CST directory

--output=...
Any string can be entered as an output name.

--cpu=...
Possible parameters:
1 ..FSIMX6SDQ
2 ..FSIMX6SX
3 ..FSIMX6UL
4 ...FSIMX6ULL
5 ..FSVYBRID
--action=...
Possible parameters:
c...create
s...sign
e ..encrypt
j..JTAG response key
--image-path=...
Absolute path to the image

F&S Secure Boot Tool usage

F&S Secure Boot 33

--key-length=...
Possible parameters:
128 ..128 bit key
192 ..192 bit key
256 ..256 bit key
--master-key=...
Possible parameters:
o ..master key is otpmk
--jtag-resp-key=...
Possible parameters:
hex-value...................................jtag responsible key 7 Bytes, Little-Endian

Setting up a new board

34 F&S Secure Boot

6 Setting up a new board

6.1 Preconditions
You read the documentation “Linux on F&S Boards” and installed all the necessary
packages and set up a tftp service. Furthermore you downloaded the Code Signing
Tool from NXP.com and the F&S Secure Boot Tool from F&S Elektronik Systeme. It
should be mentioned that you also need the N- and U-Boot with security features.

6.2 Install secure images
The first step is to install the secure images, which corresponds to the architecture
which you are using. We assume that our architecture is fsimx6.

• nbootimx6_secure_<v>.bin

• uboot-secure-fsimx6.bin

To install these images on your board please take a look to the document Linux on
F&S Boards. You can find this document on our homepage.

6.3 fsimx6, fsimx6ul, fsimx6sx

6.3.1 Burn SRK Hash

In order to burn the SRK hash value into the fuses, you first need to enter the NBoot.
After you entered the NBoot press '.' to show the hidden menu. In this hidden menu
there is an entry called “Set SRK-HASH”. You enter this function by pressing 'S'.
Now you must enter the hash value. This is simply done by transferring the
“srkhash.txt” to the board (after you pressed 'S'!). The hash sum will be printed in or-
der to verify it. After you verified the hash sum, press 'y'. Now the hash sum is burned
into the fuses which means, that when we close the board (done in the next step) the
ROM functions uses this value to verify an image.

Note:
When you burned the hash value to the fuses be very careful, since this value can't be
changed. A wrong value means that the board won't boot anymore when it's closed.

Setting up a new board

F&S Secure Boot 35

Please select action

‘d’ -> Serial download of bootloader

‘E’ -> Erase flash

‘B’ -> Show bad blocks

Use NetDCUUsbLoader for USB download

Select fuse settings

‘1’ -> Boot from NAND (64 pages)

‘S’ -> Set SRK-HASH

‘B’ -> Set Boot Security Settings

‘J’ -> Set JTAG mode

‘s’ -> dump secure fuses

‘l’ -> HAB events

‘R’ -> Revoke SRK

THIS IS A PERMANENT CHANGE

please enter the Hash-Value and confirm it with enter

CRC-Check successful!

The following fuses will be blown:

 address 0x18 value 0x12e61558

 address 0x19 value 0xd4023941

 address 0x1a value 0xf69b56a7

 address 0x1b value 0x3457b2b4

 address 0x1c value 0xe86dad80

 address 0x1d value 0xe755cc48

 address 0x1e value 0xf2ca8c01

 address 0x1f value 0x3655f33c

 address 0x00 value 0x00004000

Enter ‘y’ to proceed, any other key to exit

Blowing fuses

Setting up a new board

36 F&S Secure Boot

address 0x18 value 0x12e61558 ...blown

address 0x19 value 0xd4023941 ...blown

address 0x1a value 0xf69b56a7 ...blown

address 0x1b value 0x3457b2b4 ...blown

address 0x1c value 0xe86dad80 ...blown

address 0x1d value 0xe755cc48 ...blown

address 0x1e value 0xf2ca8c01 ...blown

address 0x1f value 0x3655f33c ...blown

address 0x00 value 0x00004000 ...blown

Finished blowing fuses

6.3.2 Set JTAG mode

An important and powerful interface is JTAG. JTAG is by default activated so every-
body can use this interface to debug the system. That’s why JTAG is a Security vul-
nerability if you are using Secure Boot. You have the possibility to disabled the JTAG
interface or using JTAG secure, which means you can use the JTAG interface with a
private key. It is necessary to setup the JTAG mode before you enable the Secure
Boot, because afterwards there is a write protect on the fuses so can´t change the
bits for JTAG.

Disable JTAG:
Disable JTAG is done by entering the hidden menu again and press 'J' after that you
need to press 'd' and confirm with 'y'. The board has now disabled the JTAG inter-
face.
Please select action

‘d’ -> Serial download of bootloader

‘E’ -> Erase flash

‘B’ -> Show bad blocks

Use NetDCUUsbLoader for USB download

Select fuse settings

‘1’ -> Boot from NAND (64 pages)

‘S’ -> Set SRK-HASH

‘B’ -> Set Boot Security Settings

Setting up a new board

F&S Secure Boot 37

‘J’ -> Set JTAG mode

‘s’ -> dump secure fuses

‘l’ -> HAB events

‘R’ -> Revoke SRK

THIS IS A PERMANENT CHANGE!

please enter ‘s’ to set secure JTAG or ‘d’ to set disable JTAG de-
bugging

The following fuses will be blown:

 address 0x06 value 0x00100000

 address 0x06 value 0x00c00000

Enter ‘y’ to proceed, any other key to exit

Blowing fuses

 address 0x06 value 0x00100000

 address 0x06 value 0x00c00000

Finished blowing fuses

Secure JTAG:
Secure JTAG is done by entering the hidden menu again and press 'J' after that you
need to press 's' and enter the response key which you have created with the User
Tool. After that confirm it with 'y'. The JTAG interface is now set to secure JTAG.
Please select action

‘d’ -> Serial download of bootloader

‘E’ -> Erase flash

‘B’ -> Show bad blocks

Use NetDCUUsbLoader for USB download

Select fuse settings

‘1’ -> Boot from NAND (64 pages)

‘S’ -> Set SRK-HASH

‘B’ -> Set Boot Security Settings

Setting up a new board

38 F&S Secure Boot

‘J’ -> Set JTAG mode

‘s’ -> dump secure fuses

‘l’ -> HAB events

‘R’ -> Revoke SRK

THIS IS A PERMANENT CHANGE!

please enter ‘s’ to set secure JTAG or ‘d’ to set disable JTAG de-
bugging

please enter the response key and confirm it with enter

CRC-Check successful!

The following fuses will be blown:

 address 0x20 value 0x789abcde

 address 0x21 value 0x00123456

Enter ‘y’ to proceed, any other key to exit

Blowing fuses

 address 0x20 value 0x789abcde

 address 0x21 value 0x00123456

Finished blowing fuses

The following fuses will be blown:

 address 0x06 value 0x00100000

 address 0x06 value 0x00c00000

Enter ‘y’ to proceed, any other key to exit

Blowing fuses

 address 0x06 value 0x00100000

 address 0x06 value 0x00c00000

Finished blowing fuses

Setting up a new board

F&S Secure Boot 39

6.3.3 Enable Secure Boot

Before you enable Secure Boot be sure you have installed a correctly signed image.
Once burned this fuse you are not able to revoke the fuse. Also you have to check
the JTAG mode. By default the JTAG mode is open. So be sure you setup JTAG se-
cure or disable the interface. If not anybody are able to connect the board to JTAG
and debug the system.
To set the board configuration to “closed”. This is done by entering the hidden menu
again and press 'B' after that you need to press 'c' and confirm with 'y'. The board is
now in closed configuration and will only accept correct signed/encrypted images.
Please select action

‘d’ -> Serial download of bootloader

‘E’ -> Erase flash

‘B’ -> Show bad blocks

Use NetDCUUsbLoader for USB download

Select fuse settings

‘1’ -> Boot from NAND (64 pages)

‘S’ -> Set SRK-HASH

‘B’ -> Set Boot Security Settings

‘J’ -> Set JTAG mode

‘s’ -> dump secure fuses

‘l’ -> HAB events

‘R’ -> Revoke SRK

testing NBoot …

found CSF

successfully authenticated

THIS IS A PERMANENT CHANGE!

HAB STATUS: Open

please enter ‘c’ to set HAB-Mode: Closed

The following fuses will be blown:

 address 0x06 value 0x00000002

 address 0x08 value 0x00100000

 address 0x06 value 0x00060000

Setting up a new board

40 F&S Secure Boot

 address 0x00 value 0x0000000c

Enter ‘y’ to proceed, any other key to exit

Blowing fuses

address 0x06 value 0x00000002 ...blown

address 0x08 value 0x00100000 ...blown

address 0x06 value 0x00060000 ...blown

address 0x00 value 0x0000000c ...blown

Finished blowing fuses

6.3.4 Dek blob creation

If you want to create an encrypted image, it is required that you have installed secure
U-Boot.
After entering the U-Boot, transfer the key from User Tool “dek.bin” to the board
e.g. using TFTP.
U-Boot 2014.07-ga8061e6 (Dec 07 2017 – 09:25:44) for F&S

CPU: Freescale i.MX6DL rev1.3 at 792 MHz

RESET: POR

Board: efusA9 Rev. 1.20 (LAN, eMMC, 2x DRAM)

DRAM: 512 MiB

NAND: 256 MiB

MMC: FSL_SDHC: 0, FSL_SDHC: 1

In: serial

Out: serial

Err: serial

Net: FEC [PRIME]

USB EHCI 1.00

Hit any key to stop autoboot: 0

efusA9 # tftp dek.bin

Using FEC device

TFTP from server 10.0.0.109; our IP address is 10.0.0.252

Setting up a new board

F&S Secure Boot 41

Filename ‘dek.bin’.

Load address: 0x10800000

Loading:

 *

 2.9 KiB/s

done

Bytes transferred = 32 (0x20)

efusA9 #

Now you can call the dek_blob function in U-Boot. The dek_blob function expect 3
parameters

1. Source RAM address which points to the key

2. Destination RAM address which points to the dek blob

3. Key length, is the length which you have entered during the F&S Secure Boot

Tool execution.

Now generate the key by running:
efusA9 # dek_blob $loadaddr 0x10800100 256

SEC: RNG instantiated

Encapsulating provided DEK to form blob

DEK Blob

8100584166552000CC526D82F83EB075FF0228052EA1B3E2E502F436B142CDE30F
08053DD00C4397DCCB3E2DBC350260A46BC3EDC07E15A5538DFA9FFAF9C6B64902
35D332CFEE6B8E9B9B4F22B5C7F2CA081466553C03EB

efusA9 #

The key in the red box is the output key and is known as dek blob.

Setting up a new board

42 F&S Secure Boot

6.4 fsimx8mm, fsimx8mn, fsimx8mp

6.4.1 Burn SRK Hash

Note:
When you burn the hash value to the fuses be very careful, since this value can't be
changed. A wrong value means that the board won't boot anymore when it's closed.

In order to burn the SRK hash value into the fuses, you first need to enter the Secure
U-Boot. Now you must enter the hash value. This is simply done by substituting the
values below with those of your “SRK_fuse.bin”. First you need to format the values
with a “hexdump” like it is shown below. The “srkhash.txt” is located in your F&S Se-
cure Boot Tools top directory after creating certificates.
Now you need to load your SRKHash.txt to your Board and execute the hab_fuse
command.

tftp srkhash.txt

sing ethernet@30be0000 device

TFTP from server 10.0.0.113; our IP address is 10.0.0.252

Filename 'srkhash.txt'.

Load address: 0x40480000

Loading:

 *

 2 KiB/s

done

Bytes transferred = 70 (0x46)

hab_fuse

CRC check successfull

The following fuses will be blown:

 word 6 fuse 0: 0x12e61558

 word 6 fuse 1: 0xd4023941

 word 6 fuse 2: 0xf69b56a7

 word 6 fuse 3: 0x3457b2b4

 word 7 fuse 0: 0xe86dad80

 word 7 fuse 1: 0xe755cc48

 word 7 fuse 2: 0xf2ca8c01

Setting up a new board

F&S Secure Boot 43

 word 7 fuse 3: 0x3655f33c

THIS IS A PERMANENT CHANGE!!!

Are you sure? [Y/n]

y

 Blowing fuse 6, word 0 with value 0x12e61558... Blown!

 Blowing fuse 6, word 1 with value 0xd4023941... Blown!

 Blowing fuse 6, word 2 with value 0xf69b56a7... Blown!

 Blowing fuse 6, word 3 with value 0x3457b2b4... Blown!

 Blowing fuse 7, word 0 with value 0xe86dad80... Blown!

 Blowing fuse 7, word 1 with value 0xe755cc48... Blown!

 Blowing fuse 7, word 2 with value 0xf2ca8c01... Blown!

 Blowing fuse 7, word 3 with value 0x3655f33c... Blown!

6.5 Enable Secure Boot
Now that the hash is burned into the device it is ready to be closed. To do this another fuse
needs to be burned. This can be done with hab_close

hab_close

THIS IS A PERMANENT CHANGE!!!

Are you sure? [Y/n]

Y

 Blowing fuse 1, word 3 with value 0x02000000... Blown!

Reset the Board and wait a few seconds.

Note:
If you don’t see anything after 15 seconds at maximum, there was something wrong and the
image cannot be verified. So the board is now broken. If the Hash was burned into the fuses
correctly, it is possible to recover the Board with the F&S recovery tool and correctly signed
Images.

Flowcharts

44 F&S Secure Boot

7 Flowcharts

7.1 Create certificates and burn SRK hash

Figure 2: Creating certificates and blow fuses (new board)

Note:
You have to create your certificates only once! Furthermore you have to blow the fuses on
every board!

Flowcharts

F&S Secure Boot 45

7.2 Sign an image

Figure 3: Signing images

Note:
You have to sign your images only once.

Flowcharts

46 F&S Secure Boot

7.3 Encrypt an image

Figure 4: Encrypting images

Flowcharts

F&S Secure Boot 47

List of Figures
Figure 1: Boot sequence...1
Figure 2: Creating certificates and blow fuses (new board) ...44
Figure 3: Signing images ..45
Figure 4: Encrypting images ...46

List of Tables
Table 1: NBoot VS commands ...6
Table 2: Content of the created release directory ..15

Listings

Important Notice
The information in this publication has been carefully checked and is believed to be entirely
accurate at the time of publication. F&S Elektronik Systeme assumes no responsibility, how-
ever, for possible errors or omissions, or for any consequences resulting from the use of the
information contained in this documentation.
F&S Elektronik Systeme reserves the right to make changes in its products or product speci-
fications or product documentation with the intent to improve function or design at any time
and without notice and is not required to update this documentation to reflect such changes.
F&S Elektronik Systeme makes no warranty or guarantee regarding the suitability of its
products for any particular purpose, nor does F&S Elektronik Systeme assume any liability
arising out of the documentation or use of any product and specifically disclaims any and all
liability, including without limitation any consequential or incidental damages.
Products are not designed, intended, or authorised for use as components in systems in-
tended for applications intended to support or sustain life, or for any other application in
which the failure of the product from F&S Elektronik Systeme could create a situation where
personal injury or death may occur. Should the Buyer purchase or use a F&S Elektronik Sys-
teme product for any such unintended or unauthorised application, the Buyer shall indemnify
and hold F&S Elektronik Systeme and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, expenses, and reasonable attorney
fees arising out of, either directly or indirectly, any claim of personal injury or death that may
be associated with such unintended or unauthorised use, even if such claim alleges that F&S
Elektronik Systeme was negligent regarding the design or manufacture of said product.

