
Linux on F&S Boards
Introduction

Version 0.22
(2023.10.09)

© F&S Elektronik Systeme GmbH
Untere Waldplätze 23

D-70569 Stuttgart
Germany

Phone: +49(0)711-123722-0
Fax: +49(0)711-123722-99

About This Document
This document shows how to use the bootloaders, Linux system and peripherals on F&S
boards and modules and how to update the system software. It also covers how to build
bootloader, Linux kernel and root filesystem as well as own applications for the device.

Remark

The version number on the title page of this document is the version of the document. It is
not related to the version number of any software release! The latest version of this docu-
ment can always be found at http://www.fs-net.de.

How To Print This Document

This document is designed to be printed double-sided (front and back) on A4 paper. If you
want to read it with a PDF reader program, you should use a two-page layout where the title
page is an extra single page. The settings are correct if the page numbers are at the outside
of the pages, even pages on the left and odd pages on the right side. If it is reversed, then
the title page is handled wrongly and is part of the first double-page instead of a single page.

Typographical Conventions

We use different fonts and highlighting to emphasize the context of special terms:

File names

Menu entries

Board input/output

Program code

PC input/output

Listings

Generic input/output

Variables

8 9

Titlepage

http://www.fs-net.de/

History
Date V Platform A,M,R Chapter Description Au
2019-08-16 0.1 * A * Initial Version. Large parts are moved from the FirstSteps doc-

ument over here, other parts are newly written
HK

2019-11-15 0.2 M 3.6, 10
*

Use <arch> instead of fsimx6 in file names
Minor fixes all across the text

HK
HK

2019-12-12 0.3 fsimx7ulp A
A
A

3.7, 4
5.7.3
5.10.3

Add notes for PicoCoreMX7ULP
Add chapter RNDIS
Add commands to copy files from USB stick to local eMMC

PJ
PJ
PJ

2019-12-18 0.3 * A
A
M
A

2.2
3.8
5.4
5.10

Add chapter “What is Embedded Linux?”
Add chapter about mass storage devices in general
Rework chapter for MTD partitions
Add graphics to show how downloading works in each case

HK
HK
HK
HK

2020-03-24 0.4 * A
M

8.18
10.2

Add distinguish between Yocto and Buildroot
Adjust documentation for new Yocto version 2.4

PG
PG

2020-04-22 0.5 * A
M
R
M, A

A

3.1
3.6
4.2
6

10

Add comment about license of the VirtualBox Extension Pack
Update release versions
Remove duplicate bad block description (already in 3.8.1)
Add detailed descriptions for install/update/recover and how to
switch eMMC to Enhanced Mode; reorder subchapters
Add hint to build own configurations and not simply use ours

HK
HK
HK
HK

HK
2020-08-19 0.6 fsimx6ul M

M
A
A
M
M
A
A

M
A

3.8.2

4.6
4.8
4.9
5.6
5.9.3
5.10.2
5.10.5

10.1.4
11

Add documentation for NBoot eMMC support and the original
note for eMMC only devices with NBoot verions 43 or higher
Add necessity of MBR and FAT partition for U-Boot
Add chapter “Create Partitions”
Add chapter “Access Partitions with USB”
Add commands to erase environment in eMMC
Add documentation on fatwrite and ums command
Add chapter “TFTP download, Store in eMMC Flash”
Add chapter “Copy individual filesystem images over UMS to
local eMMC”
Add defconfig for eMMC only devices
Add chapter “eMMc memory layout”

KM

KM
KM
KM
KM
KM
KM
KM

KM
KM

2021-04-26 0.7 fsimx8mm M
M
M
M, A
M
D
A
A
A
A
A
M
A

1.1
3.6
4.0
3.6
3.8.2
5.6
5.6.1
5.6.2
5.6.3
5.9.4
5.10
5.11.2
6.8

Add fsimx8mm architecture
Remove minimal images, Add sdcard images, add distro flag
Add PicoCoreMX8MM which has no NBoot
Change distro description and add update file names
Use eMMC-Layout with NBoot, PicoCoreMX7ULP is special
Remove erasing of UBootEnv
Add general env command
Add mmcdev to list of special variables
Add env default -a to delete/restore environment
Move writing to FAT partition to extra sub-chapter
Add extra chapter for ums
Fix graphic
Add chapter for command fsimage

PJ
PJ
PJ
HK
HK
HK
HK
HK
HK
HK
HK
HK
HK

2021-06-28 0.8 fsimx8mm A 3.8.2 Add information about sysimage PG
2021-08-05 0.9 fsimx6ul M

M
M

1.1
3.6
7.8

Add PicoCOMA7 and PicoCoreMX6UL100
Add correct difference between NBoot I.MX6 and I.MX8
Add fsimx6ul for fsimage command

PJ
PJ
PJ

2021-10-18 0.10 all A
A
A
A
A
M

6.4.7
9,9.2
9.1.1
10.1.4,
10.1.6
4.6,4.7,4.8,
4,9,5.11.2/4
/5

Add information about building install.scr with Buildroot
Add information about Weston/Wayland
Add information about Weston/Wayland
Add Information about building U-Boot with Buildroot

Fix wrong display of sysimage entry

PG
PG
HK
PG

PG

2021-11-08 0.11 fsimx8mn M
M
M
M

3.8.2
5.11.2
10.2.4
10.2.5

Add UBoot offset for fsimx8mn in sysimg
Add note about writing a bigger root filesystem
Exclude all fsimx8 architectures from fbdev
Add a mention of Wayland/Weston to fus-image-std

KM
KM
KM
KM

Linux on F&S Boards v

2022-01-31 0.12 fsimx6 M 1.1 Add efusA9r2 PJ
2022-05-18 0.13 Fsimx7ulp

all
M
M

5.11.4
6.4.7

Add comment about new eMMC layout
Add information about Yocrto install script

PG

2022-09-09 0.14 fsimx8mm A 8.20 Add instructions to use the RDP for Buildroot DA
2022-09-13 0.15 fsimx8mm A,M 8.20 Add instructions to use the RDP for Yocto

Minor changes concerning the wording
DA

2022-10-18 0.16 ALL M ALL Reworked the entire document, fixed figure bugs and conver-
ted it to the .docx format

DA

2022-11-25 0.17 fsimx8mp A 1.1 Add table entry for picocoremx8mp(r2), armstonemx8mp AD
2023-09-05 0.18 ALL M ALL Revert version 0.16 and use .odt format again PG
2023-09-05 0.19 ALL M 3.8.2

10.2
8

Add reserved area to sysimage table
Add information for Yocto 4.0
Add imx8 and Yocto4.0 information

PG

 2023-10-09
2023-10-26

2023-10-27

2023-10-30

0.20 ALL A
R

M
M
M
M
R/A/M

8.15
4.6, 4.8,
4.9, 5.11.2,
5.11.5
1.1
3.7
4
6.8
5.11 → 7

Add ALSA settings for the wm8960
Remove duplicate text sections caused by obsolete regions, in
fact remove all regions that were originally pointing to
external .odt files
Add fsimx8mn and PicoCoreMX8MMr2 to architectures table
Keep NBoot part simple, move specific stuff to chapter 4
Add ARM32/64 handling, improve introduction to NBoot
Rewrite whole fsimage sub-chapter
Move chapter 5.11 to new chapter 7 and rewrite large parts

DA
HK

HK
HK
HK
HK
HK

2023-11-14 0.21 ALL M 9.21 Add information about bluetoothctl PG

2023-12-19 0.22 ALL M 7.2 Add information fsimx6ul emmc-uboot PG

V Version

A,M,R Added, Modified, Removed

Au Author

vi Linux on F&S Boards

Table of Contents

1 Introduction 1
1.1 F&S Board Families and CPU Architectures..1

1.2 Scope of This Document..2

2 Embedded Linux 4
2.1 What Is Linux?...4

2.2 What is Embedded Linux?...6

2.3 The Command Line Paradigm...7

2.4 Manufacturer Versions...8

2.5 Linux Kernel Layout...9

2.6 Linux Licenses...10

2.7 Patents, Designs, Logos...11

3 Linux On F&S Boards 13
3.1 Linux PC..13

3.2 Connections Between Board and PC...14

3.3 The Parts of a Linux System..16

3.4 Buildroot and Yocto..17

3.5 F&S Download Area...19

3.6 Release Content..21

3.7 Boot Sequence...25

3.8 Mass Storage Devices...26

3.8.1 NAND...26

3.8.2 eMMC..29

3.8.3 SD Card...31

3.8.4 USB Media...32

4 Working With NBoot 33
4.1 NBoot on ARM32 (Vybrid, i.MX6)...34

4.1.1 Entering NBoot...34

4.1.2 Show Bad Blocks...35

4.1.3 Erase Flash..36

4.1.4 Serial Download...36

4.1.5 USB Download...38

Linux on F&S Boards vii

4.1.6 Save Bootloader Image..39

4.1.7 Execute Bootloader..40

4.1.8 Create Partitions..40

4.1.9 Access Partitions with USB..40

4.2 NBoot on ARM64 (i.MX8)...41

4.2.1 Handling NBoot..42

5 Working With U-Boot 43
5.1 Entering U-Boot..43

5.2 Commands...44

5.3 Command History..46

5.4 MTD Partitions...46

5.5 UBI Concepts...48

5.6 Environment...52

5.6.1 Environment Variables...52

5.6.2 Special Variables..53

5.6.3 Save the Environment..54

5.6.4 Using Variables in Commands...55

5.6.5 Running Commands in a Variable..55

5.7 Network Configuration..56

5.7.1 Set MAC Address...57

5.7.2 Set IP addresses..58

5.7.3 RNDIS..59

5.8 Image Download..61

5.8.1 Network Download With TFTP or NFS...61

5.8.2 Low-level Read From USB Device...64

5.8.3 Low-Level Read From SD Card...65

5.8.4 Low-level Read From UBI Volume...68

5.8.5 High-Level Read From Filesystem...69

5.9 Image Storage..71

5.9.1 Save to NAND Flash MTD Partition...72

5.9.2 Save to UBI Volume...72

5.9.3 Save to SD Card or eMMC...73

5.9.4 High-Level Write To Filesystem..73

viii Linux on F&S Boards

5.10 Exporting eMMC as USB Mass Storage Device...73

5.11 Booting the Linux System...74

6 Special F&S U-Boot Features 76
6.1 Simplified $loadaddr...76

6.2 Allow Wildcards in FAT Filenames...77

6.3 Improved NAND Driver...78

6.4 The Install/Update/Recover Mechanism...79

6.4.1 Regular Boot Process..80

6.4.2 Install Process..80

6.4.3 Update Process..81

6.4.4 Recover Process..82

6.4.5 Configuring the Install/Update/Recover Mechanism...84

6.4.6 The update Command...88

6.4.7 Creating an Appropriate U-Boot Script Image..88

6.5 Linux Boot Strategies...90

6.5.1 Kernel Settings...92

6.5.2 Device Tree Settings..92

6.5.3 Rootfs Settings...93

6.5.4 Mode Settings..93

6.5.5 Console Settings..93

6.5.6 Login Settings..94

6.5.7 Network Settings..94

6.5.8 Init Settings..94

6.5.9 Extra Settings...95

6.5.10 Boot Strategy Examples...95

6.6 NAND Layout Strategies..96

6.6.1 Linux Kernel In MTD partition...98

6.6.2 Linux Kernel In Raw UBI Volume...98

6.6.3 Linux Kernel In Root Filesystem...99

6.7 Configure eMMC For Enhanced Mode...100

6.8 Command fsimage To Handle F&S Images..104

6.8.1 fsimage on ARM32 (PicoCoreMX6UL[100], PicoCoreMX6SX).......................105

6.8.2 fsimage on ARM64...105

Linux on F&S Boards ix

7 Common Ways of System Installation 111
7.1 Installation to NAND Flash..111

7.2 Installation to eMMC...112

7.2.1 Installation From SD Card/USB Pendrive With Same Layout.........................113

7.2.2 Installation From SD Card/USB Pendrive With System Image File.................115

7.2.3 Installing Individual Files...116

7.3 F&S Update and Installation Scripts...117

8 Working With Linux 118
8.1 Busybox...118

8.2 Device Trees..118

8.3 Devices And Device Drivers...118

8.4 Old Way With Board Support Code..119

8.5 New Way With Device Trees..122

8.6 Advantages of Device Trees..124

8.7 Built-in Drivers And Kernel Modules...124

9 Using the Standard System and Devices 125
9.1 Sysfs..126

9.2 bdinfo...126

9.3 Serial..127

9.4 CAN...127

9.5 Ethernet...127

9.6 WLAN...128

9.7 Qt support..129

9.8 Video Processing (gstreamer support)...129

9.9 I2C...132

9.10 SPI...132

9.11 USB Stick (Storage)...134

9.12 RTC..134

9.13 GPIO..135

9.14 Sound...137

9.15 Pictures..138

9.16 TFTP..139

9.17 Telnet...139

x Linux on F&S Boards

9.18 SSH..139

9.19 VNC...140

9.20 RDP...140

9.21 Bluetooth..142

10 Graphical Environments 144
10.1 Rendering..144

10.1.1 Weston/Wayland..144

10.1.2 X Server technology...145

10.1.3 Qt with OpenGL, EGL, EGLFS and more...146

10.2 Weston/Wayland Configuration..146

10.2.1 General behaviour..146

10.2.2 Weston touch calibration..147

10.2.3 Xwayland...148

10.3 X.Org Server Configuration..148

10.3.1 General behaviour..148

10.3.2 GPU support..149

10.3.3 X.Org Server touch calibration...149

10.4 Qt Environment..149

10.4.1 Qt touch configuration..150

10.4.2 Running Qt5 Example..150

11 Compiling the System Software 152
11.1 Buildroot...153

11.1.1 Install Cross-Compile Toolchain...153

11.1.2 Installing the mkimage Tool..153

11.1.3 Unpacking the Source Code..154

11.1.4 Compiling U-Boot...155

11.1.5 Compiling the Linux Kernel..155

11.1.6 Compiling Buildroot, Uboot and Linux Kernel...156

11.2 Yocto..160

11.2.1 Installing the mkimage Tool..161

11.2.2 Unpacking the Source Code..161

11.2.3 Download Main Yocto...162

11.2.4 Configure Yocto for an F&S architecture..162

Linux on F&S Boards xi

11.2.5 Build a Yocto Image...164

11.2.6 Rebuild A Single Package..166

11.2.7 Add Packages to an Image..166

11.2.8 Useful utilities...167

11.2.9 Further reading...167

12 Appendix 169
List of Figures..169

List of Tables..170

Listings...171

Important Notice...172

xii Linux on F&S Boards

Introduction

1 Introduction

1.1 F&S Board Families and CPU Architectures

F&S offers a whole variety of boards and modules. Figure 1 shows the Single Board Com-
puters (SBC) NetDCU and armStone.

Figure 2 shows the Systems on Module (SOM) PicoMOD, QBliss, efus, PicoCOM, and Pico-
Core.

Each form factor consists of a whole family of boards who have many common features and
are often even pin compatible. Linux is available for all of these platforms. In the past, there

Linux on F&S Boards 1

Figure 2: Systems on Module

PicoMOD (80mm x 50mm)
QBliss (70mm x 70mm)

efus
(62mm x 47mm)

PicoCOM
(50mm x 40mm)

PicoCore
(35mm x 40mm)

Figure 1: Single Board Computers

NetDCU (100mm x 80mm) armStone (100mm x 72mm)

Introduction

was a separate Linux release for each single platform. This was quite cumbersome and also
caused a lot of duplicated work, because releases often only differed in small parts, for ex-
ample in the UART port number for the serial debug port.

As a result, F&S has invested quite some effort in the software to reduce the differences. For
example we added a directory with board specific information to the sysfs in /sys/bdinfo,
so that userspace software has a single point of information to decide for such things as the
debug port number. With the effect that now all boards with the same CPU – or rather SoC
(System on Chip) – can actually use the same release. We call this architecture releases. All
the boards of the same architecture can use the same sources, and the binaries can be used
on any board of this architecture. Please note the difference: board families are grouped by
form factor, architectures are grouped by SoC type, i.e. they usually contain boards of differ-
ent families.

Table 1 shows all architectures that are currently supported by F&S. More architectures will
be added as soon as new SoCs are used on F&S boards and modules. F&S works hard to
ensure that the differences from one architecture to another are as small as possible. In fact
most parts of the software use the same source packages. This makes switching from one
platform to another rather straightforward and allows the customer to always choose the
board that is suited best for a specific application without having to deal with a new develop-
ment environment all the time.

Architecture CPU Platforms

fsvybrid NXP Vybrid VF6xx PicoCOMA5, NetDCUA5, armStoneA5, PicoMODA5, Pico-
MOD1.2

fsimx6 NXP i.MX6 efusA9, efusA9r2, QBlissA9, QBlissA9r2, armStoneA9, arm-
StoneA9r2, PicoMODA9, NetDCUA9

fsimx6sx NXP i.MX6-SoloX efusA9X, PicoCOMA9X, PicoCoreMX6SX

fsimx6ul NXP i.MX6-UltraLite efusA7UL, PicoCOM1.2, PicoCoreMX6UL, PicoCOMA7, Pi-
coCoreMX6UL100

fsimx7ulp NXP i.MX7ULP PicoCoreMX7ULP

fsimx8mm NXP i.MX8M-Mini PicoCoreMX8MM, PicoCoreMX8MMr2

fsimx8mn NXP I.MX8M-Nano PicoCoreMX8MN

fsimx8mp NXP i.MX8M-Plus PicoCoreMX8MP, PicoCoreMX8MPr2, armStoneMX8MP,
efusMX8MP

Table 1: F&S Architectures

1.2 Scope of This Document

This document is a generic approach to explain the F&S Linux environment on F&S boards
and modules. We will have a look at Linux in general, at the bootloaders NBoot and U-Boot,
and especially how software is installed. Then we will look at the build environments Build-
root and Yocto and how the system software is built. And finally we will show how some spe-

2 Linux on F&S Boards

Introduction

cific peripherals will be used, for example I²C, CAN, SPI, sound, the gstreamer multimedia in-
frastructure and the graphics environment.

This is a rather new document, so some places may still be a little vague and some topics
are still missing completely. But we will continue to add to the text over time and thus gradu-
ally will generate a kind of reference book that comprehensively covers all aspects of Linux
on F&S boards.

Please note that this text is not specific to one of the architectures, we try to be as general as
possible. Of course, we have to distinguish from time to time when things on different archi-
tectures differ a lot, but basically all architecture dependent stuff is covered in the appropriate
FirstSteps documents. Especially all the links to hardware specific documents can be found
there.

Linux on F&S Boards 3

Embedded Linux

2 Embedded Linux

2.1 What Is Linux?

Linux is an Open Source Operating System. Which means the source code of the Linux ker-
nel itself and also of thousands of userspace applications, the so-called Userland, is avail-
able for free. Linux is running on most CPU architectures, including x86 and ARM, but also
on many other architectures from small CPUs for IoT devices (Internet-of-Things) to large
Main Frames and High Performance Computers (HPC). Linux is feature-rich and fully scal-
able. The number of applications is correspondingly diverse.

● Set-top boxes, media players, DVD/Blu-ray players, TVs

● Network devices, routers

● Storage devices (NAS)

● Home automation

● Industrial and medical applications

The Linux kernel including the device drivers also forms the basis for Android, so in principle
all Android devices, i.e. smartphones, tablets, etc., are also Linux devices. In fact most
people already use Linux devices, perhaps without knowing it (see Figure 3).

All these applications ensure that Linux continues to evolve at a rapid pace. Video and audio
codecs are often available for Linux first, also WLAN and Bluetooth drivers. In fact nowadays
even Linux itself is the first OS available for most Systems on Chip (SoC), because the SoC

4 Linux on F&S Boards

Figure 3: Some Linux devices

Embedded Linux

manufacturers use Linux to test and verify their hardware. So when the chip is released to
the public, there is also immediately a first version of all necessary Linux device drivers avail-
able.

Linux development is done by the “Community”. On one hand, the Community consists of
professional software developers who are employed by companies and earn their money by
developing software for Linux. On the other hand, there are many private enthusiasts who
contribute code to Linux that they developed in their spare time. In this way, about every nine
to ten weeks a new version of the Linux kernel is released. This is the so-called Mainline Ker-
nel.

Despite this variety of people working on the kernel, the quality is at a very high standard. If
you want to contribute a change to the kernel, you must first post it to a mailing list. There the
code is checked by many people for bugs, shortcomings and even coding style. In most
cases there are still complaints and the code has to be revised again. Often several iterations
of these revisions have to be performed until the code satisfies the requirements of the ker-
nel maintainers and is then actually integrated into the next kernel release.

One of the biggest advantages of Linux is its diversity. As you can see in Figure 4, there are
many distributions with different objectives, many graphical user interfaces, many build sys-
tems, many development environments and an overwhelming amount of open source soft-
ware packages in the Linux ecosystem. So you can choose from a huge amount of libraries,
approaches, versions, variants and other options. This flexibility is gigantic.

On the other hand, this is also a problem. Many people miss the red thread that leads them
directly to the goal. Especially Linux beginners often find themselves helpless in front of a
huge mountain of possibilities and don't know where to start. This problem is very difficult to

Linux on F&S Boards 5

Figure 4: Linux diversity

Many different distributions
Debian
Ubuntu
Fedora
Suse
Mint
...

Many different GUIs
X11

Wayland
Gnome/GTK+

KDE/Qt
Mate
XFCE
LXDE

Enlightenment
...

Many different IDEs
Eclipse
Glade

QtCreator
Kate

Emacs
Make
cmake

...

Overwhelming
variety of open-
source packges

Distributions provide
up to 50000 packages

Many different build
systems
Buildroot

Yocto
ptxdist

...

Great flexibility, but also a certain entry threshold

Embedded Linux

overcome. It simply needs experience. If you work with Linux, you will definitely have to try a
lot, read a lot, research a lot, compare a lot. But since you can almost always find code that
you can reuse, this effort is well invested and saves a lot of time in the end. And after a while
you will find your individual way through the Linux jungle.

F&S tries to help by providing workshops, documentation and a support forum. Attending
these workshops and carefully reading the documentation may save you many hours of own
research and unnecessary tries. If there are still unanswered topics, you can ask in our
forum. Our software and hardware engineers will answer quickly and competently.

2.2 What is Embedded Linux?

An Embedded Linux System basically does not differ from a regular Desktop Linux System. It
uses the same source code, it uses the same compilers and software tools and it even uses
the same Userland packages. However there are often some constraints that need attend-
ance.

● Embedded Systems usually have less RAM. It is counted in megabytes, not giga-
bytes. This requires to keep the system small, only start those background services
that are really necessary, sometimes software is even optimized for size instead of
speed. Also leave out unnecessary parts of software. For example if you know that
your application will never need 3D features or web assembly, you can compile a
smaller version of the web browser without these elements.

● Embedded Systems usually do not have a hard disc drive, only small flash media. So
a full-blown distribution that needs several gigabytes of storage is most probably not
appropriate. Even the hundreds of common command line tools take too much space
and are often replaced by a compact single tool called Busybox.

● Embedded Systems are often battery-powered. So it is important that all power-sav-
ing functions actually work. Sleeping modes like Suspend-to-RAM are essential and
fast wake-up features need to be implemented. On the desktop, this is often not a pri-
ority topic.

● Embedded Systems are often connected to industrial buses like serial ports, SPI, I²C,
CAN and similar, but do not have many PCI lanes, if any at all. So common hardware
extensions known from PCs can not be used. On the other hand the SoCs in Embed-
ded devices have lots of built-in periphery, so that additional external hardware is of-
ten not necessary at all. This means different device drivers are needed compared to
a regular desktop PC.

● Embedded Devices are often headless, i.e. do not have a display. So other means of
communicating with the device need to be established. If they have a display, then
most probably a touch screen is used, not a mouse. This has to be thought of when
designing the GUI. Often no support for high-performance graphics is available, or it
is significantly less performant than on a desktop PC. The same is true for multi-me-
dia features like video playback.

● Embedded Systems are often not based on x86 CPUs, but on ARM or other SoCs.
So we need cross-compilation and different libraries.

● Embedded devices are often used in rough environments, for example outdoors
where it can be very cold or hot, or even wet. It is also possible that the power supply

6 Linux on F&S Boards

Embedded Linux

is unstable or the power is simply cut off by pulling the plug. This needs very robust
filesystems, and also recovery capabilities. Maybe regular filesystems need to be
mounted read-only, which is not possible with regular distributions.

An Embedded Linux system is therefore very similar to a regular desktop Linux system, only
the weighting of the individual objectives is different.

2.3 The Command Line Paradigm

As already mentioned there are many different graphical user interfaces under Linux. This
makes it difficult to develop graphical tools to configure and manage the system. Even for
small tasks you would have to program many variants, one for each graphics system. The in-
structions would also be correspondingly complicated: "If you use graphical user interface A,
then use tool X and click first here, then there. If you use graphical user interface B, then use
tool Y and click here, then there, then there and finally there." And everything would have to
be accompanied by a long series of screenshots. In fact, that would be completely impractic-
able.

That is why Linux decided from the beginning to use small command line tools. Each of
these tools does its job, and only that. This makes these tools very compact and rather trivial
to write. (KISS: "Keep it small and simple"). If you want to have a graphical variant, just add a
graphical frontend, but still call the command line version in the end.

This approach has several advantages.

● Instructions how to achieve something are rather simple: just show the commands to
use. The user can even copy the text from the document and paste it in his own com-
mand shell. Done! So documentation and help instructions are easy to write. No com-
plex screenshots are necessary, that may even change over time.

● If there is an error in the command line tool, just fix it and all graphical versions are
also fixed immediately.

● You can use these commands in scripts for automated processes, for example to pre-
pare a Docker container, do a complex software build or just make some recurring
tasks easier.

● You can control and manage also headless systems, i.e. systems that do not have a
display or graphical user interface at all. You just need a serial port or a network shell
like telnet or ssh.

So when you work with Linux, you will definitely get in contact with the command line. But
that is not a sign of backwardness. It is a paradigm without which the diversity of Linux would
not be manageable. And after a while you will be astonished how powerful and efficient the
work with the command line is.

2.4 Manufacturer Versions

Unfortunately the mainline kernel release cycle every nine or ten weeks is too fast for some
manufacturers. If a SoC manufacturer is about to release a completely new chip, software
development may take several months, sometimes even years. During this time, they test

Linux on F&S Boards 7

Embedded Linux

and verify the hardware, write device drivers and port and modify several software packages.
If they also had to handle a new kernel version every two months, this would lead to chaos.

This is why the manufacturer takes the then current mainline kernel (or the latest LTS version
with long term support) when he starts with the software porting. Then he works for several
months and at the end he releases his own version of the kernel. This is still the same ver-
sion, but now his source code contains all the modifications and drivers that are needed for
this new SoC. So this is the manufacturer version of the kernel.

Of course in the meantime, the mainline kernel had quite a few more releases, maybe ten or
even more. So the version numbers of mainline and manufacturer kernel diverge (see Fig-
ure 5). The mainline kernel has the newest features, but the manufacturer kernel is the only
one that supports this new SoC.

When we at F&S create a board with the new SoC, we are forced to use the manufacturer
version of the kernel, because we need the supporting code for the SoC. But on the other
hand we also have other hardware that is not necessarily restricted to the manufacturer ver-
sion. We often port back newer drivers for this hardware to provide the best possible experi-
ence for the customer.

The same is true for the Userland. For example it requires modifications to the gstreamer
multimedia infrastructure to support the video hardware encoding and decoding acceleration
that is available in some SoCs. Again there may be changes or even own versions of the
manufacturer, and again F&S has to provide additional modifications so that everything
works right out of the box.

This results in the following stack of modifications (see also Figure 6):

● The mainline version provides the basic functionality

● The manufacturer version provides support for his SoCs and evaluation boards

● The F&S version provides support for F&S boards and modules

8 Linux on F&S Boards

Figure 5: Mainline and manufacturer versions diverge

N N+1 N+2N-1 M

N N

Mainline releases

Manufacturer version

Time

Manufacturer starts development Manufacturer release

Embedded Linux

The goal is that the customer no longer has to worry about device drivers and the kernel, but
can start directly with the development of his own application.

2.5 Linux Kernel Layout

Figure 7 shows the structure of the Linux kernel. Whenever a Userland application wants to
access the hardware, it is not allowed to do so directly, it has to ask the Linux kernel to do
this. The kernel then checks if the software is privileged to access the hardware and syn-
chronizes any concurrent accesses.

Linux on F&S Boards 9

Figure 6: Mainline versions, manufacturer versions and F&S support

UserlandKernel

Manufacturer
SoC Support

Community
Mainline Kernel

F&S
Board Support

F&S
Userland Support

Customer

Manufacturer
Modifications

Community
Packages

Figure 7: Hardware accesses must go through the Linux kernel

Hardware

Userland
Applications, Tools and Libraries (Shell, GUI, LibC, Editor, Compiler,

Networking, Media Player, Browser, Services, Games, ...)

System Call Interface (SCI)

Processes
& Threads

Memory Media Storage Network
Human

Interface
System

CPUs/
Scheduler

Demand
Paging

Media
Devices

Block
Devices

Network
Devices

Character
Devices

System
Control

Virtual Memory, Virtual File System, Device Model, Protocol Families, Security, ...Ke
rn
el

Embedded Linux

To talk to the hardware, the Linux kernel uses device drivers. Each type of hardware may re-
quire an own device driver. Even hardware with the same functionality may differ. A UART
device on a PCI slot may look completely different to a UART device of one SoC, and this
may again look totally different to the UART device of a second SoC. So there are many dif-
ferent UART drivers included in the kernel for all the different UART hardware devices. But to
the Userland side, the kernel will present all these different UART devices in a generic form.
All UART devices will have a read and a write function, a function to set the baudrate, a func-
tion to set the flow control (none, XON/XOFF, RTS/CTS, etc.) and so on. So one task of the
kernel is to abstract from the underlying hardware and present the different devices in a uni-
form, virtual form.

The kernel also manages all other resources, such as RAM, storage, processes and threads,
input devices (keyboards, mice, touchpanels), output devices (displays, LEDs), GPIOs, etc.
Whenever some software has to handle these things, it has to access the kernel. This is
done via the System Call Interface. However these calls are actually part of the C library. The
C library is tightly coupled with the kernel. For example if the user does a call to function
malloc(), this will implicitly do a system call and instructs the kernel to provide some RAM
from the heap.

Or if you want to send some data to a UART port, simply open the appropriate device under
/dev, probably configure the port with tcsetattr() and then write the data to the file
descriptor. In fact each of these library functions will do at least one kernel call that actually
does the real work. So in fact you will never get in contact with the System Call Interface dir-
ectly,

2.6 Linux Licenses

The license for the Linux Kernel itself is the GNU General Public License (GPL) Version 2.
This license gives the right to everyone to use and modify the code. And it gives the right, to
re-publish the code, but only if you do not restrict the right to use and modify the code in any
way. This means you have to provide all licensees (your customers) with the source code if
they request it, otherwise they obviously can not use and modify the code. In other words if
you only use the Linux kernel for yourself, you can do with it what you like. But if you pass on
a modified version, then you have to also pass on the full source code with all your modifica-
tions. Which means you have to make your modifications public, not pro-active, but on re-
quest. You can not add something to the kernel that is Closed Source.

Software in the Userland is different. You can choose whatever license you want to publish
your software application. However if you want to reuse any existing code, either as source
code or as a binary library, you carefully have to check if the license of this code suits your
needs. There is lots of code that is published under a license that does not require you to do
anything (MIT, Apache, BSD). Other licenses may require that you mention the used software
in your code or documentation. And there are licenses that require you to fully open-source
your own code (GPL).

So it is very important, that you check the licenses of all code that you use. If the license re-
quests anything that you do not want to fulfil, than you must not use this code. Either look for
some other code or write this code on your own. For example if you use code that is pub-
lished under GPL, then you must make your own code public. This is usually not what you
want for industrial or medical applications. If you use a library that is published under the

10 Linux on F&S Boards

Embedded Linux

LGPL (Lesser GNU General Public License), then you can use this library also in a closed-
source application, as long as the library is linked as a shared library. Then you only have to
publish and make available any code that you add to the library itself, but not the code of
your main application.

Some companies use more than one license for their code. For example The Qt Company
has three different licenses for their Qt5 software and you can choose which license you
want to use for your software product.

● GPLv3. This license can only be used if you want to do an open-source project.

● LGPLv3. This license allows closed-source development if Qt5 is linked as shared lib-
rary. However not all Qt5 modules are licensed under LGPL. Especially newer parts
for modern 3D-based user interfaces and cloud based internet protocols are not yet
available. So you might be restricted to older Qt5 features if you want to use this li-
cense.

● Qt Commercial License: This license is not for free. It costs money per developer seat
and also per device sold. But you have no obligations or restrictions, you can use
from Qt5 whatever you like.

So it is of course possible to write closed-source applications in Linux. But be careful what
code you reuse. Also note that some third-party code is not for free.

Note

The license is only relevant if you directly use code in your application, either by directly
including the sources in your own code or by a library that is linked to your code. But in the
case of a stand-alone program that is started independently, the license does not matter.
For example you can execute an independent GPL program at any time without having to
disclose anything of your own code.

2.7 Patents, Designs, Logos

Unfortunately “Open Source” does not necessarily mean “No Costs”. The Linux system itself
is for free. Any costs involved with Linux are mainly costs by service providers for additional
support or software features. But there are some topics that may not be for free.

Video and Audio Codecs

Video and audio codecs are often protected by patents.

● MPEG-2 (DVD), MPEG-4 (H.263, H.264, H.265) have to be licensed from the MPEG
License Association

● WMV (VC1) and WMA have to be licensed from Microsoft

● Dolby Digital (AC3) has to be licensed from Dolby Laboratories

● Digital Theater Sound (DTS) has to be licensed from DTS, Inc.

Some Codecs are supposed to be free.

Linux on F&S Boards 11

Embedded Linux

● Google guarantees that VP8 and VP9 Codecs, used in WebM, can be used freely.
Google will cover all costs in case any patent claims (e.g. from patent trolls) arise.

● The patents on MP3 expired in April 2017. Since then MP3 can be used freely.

Graphics and Computing Libraries

Also Graphics and Computing Libraries may not be free.

● OpenGL, OpenVG and Vulkan have to be licensed from Khronos Group

● OpenCL has to be licensed from Khronos Group

● CUDA has to be licensed from Nvidia; the same may be true for machine learning lib-
raries

Fonts and Images

Fonts and graphical images may be covered by copyrights or design patents. If you want to
use them, you have to license them. Especially you might be tempted to use common fonts
like Arial or Courier New. But these fonts are copyrighted by Microsoft. When using a Win-
dows system, you are of course allowed to use these fonts. But not necessarily in a Linux
system. So please make sure if using such fonts is allowed. There are often free versions of
similar fonts available, for example the Liberation font family for Linux (Liberation Sans in-
stead of Arial, Liberation Mono instead of Courier New, etc.)

Logos for Hardware Support

If you want to officially use logos for USB, WiFi, HDMI, Bluetooth and similar, you are usually
obliged to participate in the appropriate association, requiring an annual fee. In addition, con-
formity tests may be required, to guarantee that the standard specifications are not violated.
For example WiFi/WLAN chips must conform to the regulatory specifications for the country
they are used in, i.e. the maximum allowed radio transmission strength must not be ex-
ceeded and only the released frequency channels may be used.

Important Notice

The default configurations and sample images that F&S provides in their BSPs are not
meant for final distribution. They may contain audio and video codecs that are not free,
they may contain Qt software that would require the commercial license and they may use
software tools or hardware drivers (for example WLAN software) that would require con-
formance tests or software licenses.

So please create your own images by removing all parts that you do not need and adding
all extra parts that you need. You are responsible for paying all license fees as required by
the software you publish to your end customers.

12 Linux on F&S Boards

Linux On F&S Boards

3 Linux On F&S Boards

3.1 Linux PC

When working with an F&S board, development is done on a PC and then software is trans-
ferred to and executed on the board (see Figure 8). This means we need to do cross-compil-
ation, i.e. compile code on an x86-CPU, but for the ARM-CPU of the board. This has two im-
pacts.

1. When building software, the configuration step can not check the environment of the
final system on-the-fly. Such parameters have to be given beforehand. This makes
cross-compilation slightly more complicated in some cases.

2. The resulting software can not be executed and tested on the PC, it can only run on
the board itself.

However the higher performance of the PC when building software is a much better benefit.
A PC has more CPU cores, more speed per core, more memory, more hard disc space. And
this is really necessary when building your own root filesystem. For example when building a
Yocto system with the Chromium browser, you need about 100 GB of hard disc space, at
least 10 GB of RAM and this takes about 10 to 16 hours on a 3 GHz 64-bit Quad-Core Intel
Core i7 with SMT (Hyperthreading). Try to do this on a board with a 1 GHz 32-bit Single-Core
ARM CPU, with 1 GB of RAM, no hard disc and with only 512 MB of NAND flash or 4 GB of
eMMC. Other than that only rather slow external storage media like USB stick or SD card is
available, that will also need to be used as swap space. This will take ages to build. And re-
member, you might need to do this more than once.

When working with Linux on the board, you also need a Linux based PC for the software de-
velopment. However this PC does not necessarily need to be a native Linux PC. It can also
be a virtual machine running on a native Windows PC. In fact this configuration has some ad-
vantages, because then also Windows tools can be used, too. For example F&S provides

Linux on F&S Boards 13

Figure 8: F&S development environment

F&S Software Release

Linux-PC (native or VM) F&S Starterkit

Serial + Ethernet
Connection

Linux On F&S Boards

some tools that were originally used with Windows Embedded Compact based boards and
are therefore only available for the Windows platform (DCUTerm, NetDCUUSBLoader).

The type of distribution that is used on the PC does not matter. If you have any preference,
feel free to use it. We at F&S are using Fedora, simply because we like this distribution, es-
pecially with the MATE GUI. The Linux system is running as virtual machines in VirtualBox
(Oracle) under a Windows host. VirtualBox is available for free. (But please be careful, be-
cause the VirtualBox Extension Pack that is used to pass on USB devices into the VM is not
free when used in commercial products.)

This is why we also have pre-configured virtual machine images with Fedora and also some
documentation that explains how to configure everything in Fedora. So if you do not have
any preference, we recommend using Fedora because there we have the most knowledge
and can help best.

Note

You will find the document AdvicesForLinuxOnPC.pdf on the F&S website that ex-
plains how to set up a Linux based development machine.

F&S also offers a pre-configured virtual machine image based on VirtualBox. Just install
the free software VirtualBox on your PC. The operating system of this PC does not matter,
VirtualBox is available for all major systems. Then download the image from our server
and import it in VirtualBox. As a result you will have a virtual machine running a Fedora
Linux and with all sources of a current release installed and pre-compiled.

There is a document Quickstart with F&S Development Machine.pdf that ex-
plains this procedure in more detail.

As you already have seen in Chapter 2.4 with the manufacturer kernel, it may take some
time until software is available for ARM platforms or specific SoC variants. This is not only
true for the kernel, but also for the Userland. Software is almost always developed for PCs
and it takes time until patches for other CPU architectures slowly migrate into the original
packages. It also takes time until build environments like Buildroot and Yocto update to
newer packages. And then it takes again some time, until we at F&S have ported all this stuff
to our boards and modules.

As a result it is often not the best choice to have the newest Linux distribution on your PC. If
compiler versions (GCC), other build tools or libraries are too new, you may get problems
when building some older packages. A good choice is an LTS version that is about one or
two years old.

3.2 Connections Between Board and PC

On the other side there is the board. The Starterkit provides all necessary cables that you
need for development. In case of a module, also a baseboard is part of the Starterkit. The
baseboard brings all signals of the module to common connectors, like SD card slots, USB
Host Type A, Ethernet RJ45 or Jack connectors for audio. Other signals, that do not have a
well-defined connector, like SPI, I²C, CAN or GPIOs, are available on two-row pin connect-
ors.

14 Linux on F&S Boards

Linux On F&S Boards

For the specific location of each connector on each platform, especially the serial debug port,
please refer to the FirstSteps document of your board. There are images that show the con-
nectors on the boards, modules and Starterkit baseboards.

You will use at least a serial connection between PC and board. The cable is connected to
the serial debug port on the board side. If your PC does not have a serial port you need to in-
stall a PCIe card with a serial port or you need to use a USB-to-serial adapter (see Figure 9).
Please note that some cheap adapters do not work reliably because they have a very high
deviation from the standard baud rate.

The serial connection is used to log-in and control the board with simple text commands. This
means we also need a terminal program on the PC to enter these commands and see the
results. We recommend a terminal program that supports a 1:1 binary download and also
supports ANSI Escape Sequences for colour and text highlighting. Examples are:

● TeraTerm (Windows)

● PuTTY (Windows/Linux, does not support 1:1 download)

● minicom (Linux, does not support 1:1 download, but not needed in Linux)

F&S also provides a small terminal program for Windows called DCUTerm. You can find
DCUTerm in the Tools-Section of the Download Area (in My F&S). However DCUTerm does
not support ANSI Escape Sequences, which means the output of a Linux command like ls is
nearly unreadable. Instead of different colours for different file types, you will see a mixture of
file names and verbatim escape sequences. Also accessing the command history with the up
and down arrow keys is not possible in DCUTerm. So DCUTerm is not suited very well for
Linux. However it supports a 1:1 binary download. So DCUTerm is actually a good compan-
ion for PuTTY. Use DCUTerm for serial downloads and PuTTY for everything else.

The serial protocol used on the serial debug port is 115200 baud, 1 start, 1 stop bit, no flow
control. So use these settings in you terminal program.

In most cases, during development you will also have an Ethernet connection to the board to
download larger images. These files are usually transferred with TFTP, so you need to install
some TFTP server software on the Linux PC. If you also want to use NFS, for example when
exporting the root filesystem from the PC, you also need an NFS server running. These ser-
vices are usually available in the package repository of the PC Linux distribution and can
easily be activated. If you want to download files via TFTP from Windows, there is a small
program called tftpd32 by Philippe Jounin that can be used as TFTP server.

Linux on F&S Boards 15

Figure 9: Serial port options for PCs without native port

Linux On F&S Boards

3.3 The Parts of a Linux System

If you look at Figure 10, you will see that a typical Linux system has several layers. At the
bottom, there is the hardware of the platform. A bootloader initializes and configures the
hardware and then starts the Linux kernel that contains all the device drivers, controls the
memory and data storage and handles process execution. All system and userspace pro-
grams, tools and data files are located in a filesystem that is usually called Root Filesystem.
Finally the customer application is executing the function that the device is dedicated for.

On a regular desktop Linux, there may be an additional layer, the initial ram disk (initrd). This
is a small intermediate root filesystem that is sometimes needed before the real root filesys-
tem can be activated. However in the default configuration of all F&S boards, this additional
layer is not necessary. We can directly start into the main root filesystem.

The Linux system from F&S covers the following parts:

Hardware

The platform manufactured by F&S.

Bootloader

The bootloader is split into two parts: a small first level loader called NBoot
that simply calls the main bootloader and the main bootloader itself, called U-
Boot. U-Boot activates the hardware, loads the Linux kernel and executes it.
U-Boot is also used to download and install the images for Linux kernel and
root filesystem. It can also boot the board in different modes, for example loc-
ally or via the network by downloading the images on-the-fly.

16 Linux on F&S Boards

Figure 10: Components of a Linux system

Linux On F&S Boards

Linux Kernel

This is a Linux kernel modified to support F&S boards. The Linux kernel image
is the operating system of the device. It provides the device drivers, filesys-
tems, multitasking and all I/O features that the board supports. Beside the ker-
nel there are device trees. The device tree describes the hardware of the plat-
form. It tells the kernel what devices have to be activated. While a kernel im-
age may be used across different platforms, every platform needs its own
device tree file.

Root Filesystem

We use a Buildroot or Yocto based root filesystem. The root filesystem is the
filesystem that you see after the kernel has booted. It contains the userspace
programs, services, libraries and configuration files required to run the Linux
system and applications. The default root filesystem supplied with the board
has a Busybox for starting the system and to provide all standard command
line tools, some ALSA tools for sound, gstreamer for audio and video pro-
cessing, a rudimentary X-Server to show some graphical user interface after
startup and of course all the shared libraries like glibc.

Currently the bootloader U-Boot and the root filesystems based on Buildroot are mostly com-
bined for all F&S platforms, but the Linux kernel is still different for some architectures.

3.4 Buildroot and Yocto

Usually when you are using Linux on a desktop, you are actually working with a specific
Linux distribution like Ubuntu, Debian, Suse, Fedora, or similar. There are more than 100 dis-
tributions available, most of them with a specific purpose, for example best hardware sup-
port, easiest installation, most stable software, and so on. A distribution means that someone
has assembled a large collection of software, has subdivided all the software in small pack-
ages and makes these packages available as a software repository. You can decide what
packages to use and you can download and install additional packages later at any time and
you can also uninstall unused packages. The distribution also provides updates, for example
to fix security issues or to have newer versions with additional features available.

This results in a very flexible and universal system that is suited for nearly every purpose.
However if you want to use an embedded system, you most probably have a specific applic-
ation in mind. And in such a case a full-blown distribution also has a few disadvantages.

● A distribution is mainly targeted for desktops. This means installation, configuration
and usage often implies some kind of display and many components imply that they
can show their output on a Graphical User Interface (GUI).

● This also means that all components use a very comprehensive configuration. For ex-
ample a web browser will support 3D, Web Assembly, multimedia and similar stuff,
resulting in a rather large binary. And this binary will pull in a lot of libraries and thus a
lot of additional packages. So even if you know that you will never need 3D, you can
not uninstall the 3D library package alone because you could not start the browser
without this library. The package manager of the distribution will therefore automatic-

Linux on F&S Boards 17

Linux On F&S Boards

ally uninstall the browser package, too, if you uninstall the 3D library. This means a
distribution can not easily be stripped down to a small system that is specifically tar-
geted for your application. You have to carry a lot of extra ballast around that can also
cause additional security issues, even if you never use it.

● Distributions often start a lot of background services that are not required on an em-
bedded system. This slows down the boot process and increases the RAM footprint
unnecessarily.

● A generic distribution for ARM often does not support specific hardware features of
specific SoC variants. Then you probably can not use hardware accelerated video de-
coding or similar things.

● Distributions assume that they have lots of RAM and storage memory. To guarantee
that a distribution will run on an embedded system, you must also have boards with
large amounts of memory, making the devices more expensive.

● Distributions assume swap space. This is usually not available on an embedded sys-
tem.

● Distributions rely on an initrd, making the boot process unnecessary complex and
slowing down the boot process again.

● Distributions are not aware that they are probably running on flash memory based
media. So they write to log files arbitrarily often, the /tmp directory is not in a ram-
disk, they do not optimize write cycles and they do not care for wear-levelling. This
might reduce the lifetime of a flash memory based device considerably.

● Distributions assume that they are shut down in a proper way. If you simply switch
such a device off, they will lose data. Shutting down without losing data implies a
read-only mounted root filesystem, which is not possible with regular distributions.

● Distributions use the regular set of command line tools. Each tool is rather small, but
if you have hundreds of them, this sums up to a considerable amount of memory, also
increasing the memory footprint unnecessarily. They do not use Busybox.

From this point of view, a distribution is not the best solution. It is large (a minimal system
with graphics is about 1 GB of size), it is slow and it may not support SoC specific hardware
acceleration. But there are other build environments that actually do address these issues.
Two of them are Buildroot and Yocto and both are available from F&S.

The basic idea of these environments is that you create an own small distribution that just
contains those packages that you really need and even these packages are configured in a
way that no unnecessary parts are included. This results in very small Linux systems. Our
standard image with X11 and a small window manager called matchbox, gstreamer1 for mul-
timedia, ALSA for sound, a set of tools to access CAN, I²C and SPI and a picture viewer, is
just about 90 MB in size.

We will deal with Buildroot and Yocto in more detail in later chapters. For now it is sufficient to
know that F&S provides releases for both environments. There are releases for Buildroot and
releases for Yocto. So you can decide which way to go and which release to download. If you
buy a Linux Starterkit from F&S, it will contain the newest Buildroot release by default.

18 Linux on F&S Boards

Linux On F&S Boards

3.5 F&S Download Area

If you want to download hardware and software documentation, go to our main website

http://www.fs-net.de

Select Products from the menu at the top, then the board family and finally your specific
board. The top half of the screen will now show the board and its features. And in the lower
half of the screen you will find an additional menu. Select Documents there (see Figure 11).

To download any software, you first have to register with the website. Click on Login right at
the top of the window and then on the text “I am not registered, yet. Register now” (see Fig-
ure 12).

Linux on F&S Boards 19

Figure 11: Download documents from F&S website

Figure 12: Register with F&S website

http://www.fs-net.de/

Linux On F&S Boards

In the screen appearing now, fill in all fields and then click on Register. You are now re-
gistered and can use the personal features of the website, for example the Support Forum
where you can look for solutions to any problems and where you can ask your own ques-
tions. These questions are usually answered by the F&S Support Team or also sometimes by
other users.

After having logged in, you are at your personal page, called “My F&S”. You can always
reach this place by selecting Support → My F&S from the top menu. Here you can find all
software downloads that are available for you. In the top sections there are private down-
loads for you or your company (may be empty) and in the bottom section you will find generic
downloads for all registered customers.

To get access to the software of a specific board, you have to enter the serial number of one
of these boards (see Figure 13). Click on “Where can I find the serial number” to get pictures
of examples where to find this number on your product. Enter the number in the white field
and press Submit serial number. This enables the software section for this board type for
you. You will find Linux, Windows CE, and all other software and tools available for this plat -
form like DCUTerm or NetDCUUsbLoader.

First click on the type of your board, e.g. armStoneA9, then on Linux. Now you have the
choice of Buildroot or Yocto. Click on one of these. This will bring up a list of all our releases.
Old releases up to year 2018 had V<x>.<y> as version identifier for Buildroot and
Y<x>.<y> for Yocto. New releases since 2019 use B<year>.<month> for Buildroot and
Y<year>.<month> for Yocto. We will abbreviate this as <v> from now on.

Select the version you want, which is most probably the newest version, for example fsimx6-
B2020.04 if you are using a board from the fsimx6 architecture. We will use <arch> for the
architecture part of the filename from now on. This will finally show two archives that can be
downloaded.

<arch>-<v>.tar.bz2..................This is the main release itself, containing all sources, the
binary images, the documentation and the toolchain.

20 Linux on F&S Boards

Figure 13: Unlock software with the serial number

Linux On F&S Boards

sdcard-<arch>-<v>.tar.bz2....Files that can be stored on an SD Card or USB stick to al-
low for easy installation.

The SD card archive is meant for the case that you just quickly want to have the binaries for
installation. We used this archive in the FirstSteps documentation. But these files are also
contained in the main release. So if you consider downloading the main release anyway,
don't bother with the SD card file.

3.6 Release Content

These tar archives are compressed with bzip2. To see the files, you first have to unpack the
archives

tar xvf <arch>-<v>.tar.bz2

This will create a directory <arch>-<v> that contains all the files of the release. They often
use a common naming scheme:

<package>-<platform>-<v>.<extension>

With the following meaning:

<package>...................................The name of the package (e.g. uboot, linux, rootfs).
If it is a source package, we also add the version number
of the original package that our release is based on, for
example linux-5.4.70.

<platform>.................................The name of a board, if the package is only valid on one
board (e.g. armStoneA9); or the name of an architecture,
if the package is valid on different boards of the same ar-
chitecture (e.g. fsimx6), or the string f+s or fus if the
package is architecture independent.

<v>..Release version, consisting of a letter (B for Buildroot
based releases, Y for Yocto based releases) and the year
and month of the release (e.g. Y2021.04).

<extension>...............................The extension of the package (e.g. .bin, .tar.bz2,
etc.). Please note that some file types do not have an ex-
tension, for example the zImage file of the Linux kernel.

Some filenames also contain a distro component as part of the package name. The distro
defines a special variant of the compilation process, mainly in Yocto. We use this to set the
graphical subsystem, e.g. x11, fb, wayland or xwayland. So for example there may exist
several different Qt5 images, one on top of X11 (distro x11), one on top of Wayland (distro
wayland) and one where Qt does the rendering to the framebuffer itself without the help of
an underlying graphical subsystem (distro fb).

Linux on F&S Boards 21

Linux On F&S Boards

The following table lists the files that you get after unpacking the release archive. Entries in
purple are only part of a Buildroot release, entries in green are only part of a Yocto release.
To avoid having a too excessive list, we use the wildcard * in some entries to refer to a whole
group of similar file names that only differ in the name of the board or module.

There are some differences between 64-bit releases (ARMv8, e.g. i.MX8) and 32-bit releases
(ARMv7, e.g. i.MX6).

Directory/File Description

/ Top directory

Readme-buildroot-f+s.txt Release information (Buildroot)

setup-buildroot Script to unpack Buildroot source packages to a
build directory

Readme-yocto-f+s.txt Release information (Yocto)

setup-yocto Script to unpack Yocto source packages to a build
directory

binaries/ Images to be used with the board directly

nboot-<arch>-<v>.fs
nboot<arch>_<v>.bin
nboot<arch>_mmc_<v>.bin

NBoot bootloader image (ARMv8)
NBoot bootloader image (ARMv7 nand boot)
NBoot bootloader image (ARMv7 emmc boot, only
for fsimx6sx and fsimx6ul)

uboot-<arch>-<v>.fs U-Boot image (ARMv7 releases use .nb0)

Image-<arch>-<v> Linux kernel image
(ARMv7 releases use zImage-<arch>-<v>)

rootfs_min-<arch>-<v>.ubifs Minimal root filesystem image (UBIFS format)

rootfs_min-<arch>-<v>.ext4 Minimal root filesystem image (EXT4 format)

rootfs_std-<arch>-<v>.ubifs Standard root filesystem image (UBIFS format)

rootfs_std-<arch>-<v>.ext4 Standard root filesystem image (EXT4 format)

emmc-std-<arch>-<v>.sysimg Full media image for eMMC including partition table
and all partitions based

fus-image-std-<distro>
-<arch>-<v>.ubifs

Standard root filesystem image (UBIFS format)

fus-image-std-<distro>
-<arch>-<v>.ext4

Standard root filesystem image (EXT4 format)

emmc-std-<distro>-<arch> Full media image for eMMC, including partition table
and all partitions

22 Linux on F&S Boards

Linux On F&S Boards

Directory/File Description

-<v>.sysimg

install-<arch>-<v>.scr Install script for U-Boot (mkimage format)

*-<v>.dtb Device trees, one file for each supported board.

sdcard/ Files to copy to SD card

nboot-<arch>.fs
nboot-<arch>.bin

NBoot loader, name as expected by NBoot (ARMv8)
NBoot loader, name as expected by NBoot (ARMv7)

uboot-<arch>.fs U-Boot, name as expected by NBoot (ARMv7 re-
leases use ubotmx6.nb0 or similar here)

Image-<arch> Linux kernel, name as expected by install script
(ARMv7 releases use zImage-<arch> here)

rootfs-<arch>.ubifs Rootfs for NAND, name as expected by install script

emmc-<arch>.sysimg Full media image for eMMC, name as expected by
install script

install.scr Install script for U-Boot, name as expected by U-
Boot's update and install system

*.dtb Device trees, one file for each board; names as ex-
pected by install script, i.e. without version number

sources/ Source packages

u-boot-2018.03-<arch>-<v>
.tar.bz2

U-Boot source

linux-5.4.70-<arch>-<v>
.tar.bz2

Linux kernel source

Buildroot-2021.02-<arch>
-<v>.tar.bz2

Buildroot based rootfs source code

yocto-3.0-fus-<v>.tar.bz2 F&S layer for Yocto

examples-fus-<v>.tar.bz2 Examples source code

install.txt Source code of the install script

toolchain/ Cross-compilation toolchain

fs-toolchain-8.3-armv8ahf
.tar.bz2

F&S toolchain to use with <arch> (ARMv7 releases
have fs-toolchain-8.3-armv7ahf.tar.bz2)

mkimage Program needed for U-Boot script images

dl/ Additional packages for Buildroot/Yocto

Linux on F&S Boards 23

Linux On F&S Boards

Directory/File Description

* If there are additional packages required for Build-
root or Yocto, they will appear here

doc/ Documentation

<arch>-FirstSteps_eng.pdf First Steps document

LinuxOnFSBoards_eng.pdf The Linux environment on F&S boards and modules
(this text here)

Table 2: Content of the created release directory

Remark

The files in subdirectory sdcard are actually only symbolic links to the according files in the
binaries directory. However if you copy the content to an actual SD card, the referenced
files will be copied and you get a completely normal SD card content.

If you have problems unpacking the sdcard directory, for example on a Windows based sys-
tem that does not know about symbolic links, you can either copy the original files and re-
name them accordingly. Or you can unpack the separate sdcard archive, that just contains
this directory.

24 Linux on F&S Boards

Linux On F&S Boards

3.7 Boot Sequence

Figure 14 shows the typical boot sequence of the board.

Let us go through each step one by one, starting at the bottom.

1. The ROM-Loader is code that is located in a ROM inside of the chip. It is usually cap-
able of loading some piece of code from a boot device (NAND flash, SD card, eMMC,
or similar). However at this point of time the dynamic RAM (DRAM) is not yet initial-
ized. The chip does not even know if there is any DRAM attached at all. So it can only
load this code to some rather small internal RAM (IRAM). A regular U-Boot bootloader
with more than 500KB will not fit in there. This means we need a smaller step-stone
loader first, which is called NBoot on F&S systems. This step-stone loader is loaded
to IRAM and then executed

2. NBoot (short for Native-Boot) is a rather small step-stone bootloader. It detects and
activates the DRAM and then loads the main bootloader U-Boot.

Some boards like the PicoCoreMX7ULP do not have the NBoot step. On these
boards, U-Boot is directly loaded by the ROM-Loader. Of course all NBoot features
are missing then.

3. U-Boot is the main bootloader. It is used to load and execute the Linux kernel and the
device tree. It is also used to install the Linux images and to configure the boot pro-
cedure.

4. The Linux kernel provides the Linux operating system including the device drivers. It
will activate the peripherals and finally mounts the root filesystem.

Linux on F&S Boards 25

Figure 14: Boot sequence

NBoot (if available)

U-Boot

Linux Kernel

Root Filesystem (Buildroot/Yocto)

ROM-Loader

Linux On F&S Boards

5. The root filesystem contains the code for the init process and all the Userland soft-
ware. The init process will finalize the boot process, for example it will start the
background services, the GUI and probably the main application.

In the next chapters we will have a more detailed look at each of these elements.

3.8 Mass Storage Devices

Most F&S boards do not provide SATA or PCIe ports. So using a Hard Disc Drive (HDD) or
Solid State Drive (SSD) is not possible. This means the system software, i.e. boot loaders,
Linux kernel image, device trees, and the root filesystem, must be stored elsewhere.

3.8.1 NAND

The most common storage device on F&S boards is the NAND flash memory. A NAND flash
is subdivided into pages and blocks. A page is the smallest unit that can be read and written,
a block is the smallest unit that can be erased. Data can be read arbitrarily often, but before
data can be re-written, it must be erased. Typical sizes are 2 KB for a page and 64 pages or
128 KB for a block (see Figure 15).

26 Linux on F&S Boards

Figure 15: NAND flash architecture

NAND Flash

Block 0

Page 0 OOB

Page 1 OOB

Page 63 OOB

...

Block 1

Page 0 OOB

Page 1 OOB

Page 63 OOB

...

Block n

Page 0 OOB

Page 1 OOB

Page 63 OOB

...

...

Linux On F&S Boards

NAND is cheap because it does not guarantee that all bits actually work perfectly. A certain
amount of bit errors is accepted, and the user is supposed to use Error Correction Codes
(ECC) to detect any bit flips in the data. When data is written to a page, the ECC sum is com-
puted and stored with the regular data. For this purpose, the page has additional space, the
so-called spare area or Out-Of-Band (OOB) area, which is at least 64 Bytes for a 2 KB page.
When the data is read back later, the ECC is computed again and compared to the stored
ECC of the spare area. If the sums are the same, then the data contained no error and
everything was correct. But if the sums differ, then one or more bits have flipped. The ECC
algorithm was designed in a way, that the comparison of the sums can immediately tell which
bits are affected. So we can simply toggle back these bits and then we have the correct data
again.

The complexity of the ECC sum decides how many bit errors can be detected and corrected.
A simple sum can for example only detect and correct one single bit error. A more complex
sum can detect and fix up to 20, 30 or even more bit errors. But of course then the ECC sum
is bigger and needs more space to store. So the size of the spare area often limits the num-
ber of bit errors that can be corrected. F&S uses a setting that allows to detect and correct at
least 16 bit errors in a page of 2 KB. As long as the number of errors does not exceed this
limit, the data can be restored and the NAND flash is working correctly.

F&S always uses Single Level Cell (SLC) NAND flash, where each memory cell stores ex-
actly one bit of data. So there are only two states in the cell, a low and a high voltage mean-
ing 0 and 1. This is a very safe way of storing data, but such NAND flash is more expensive
compared to MLC, TLC or even QLC NAND flash, that stores two, three or even four bits of
data in one single memory cell. MLC uses four different voltages to indicate the four different
possibilities 00, 01, 10 and 11 of two bits. Accordingly TLC uses 8 different voltages for three
bits and QLC even 16 different voltages for four bits (see Figure 16).

The more bits are stored in one memory cell, the more likely it is that these bits are corrup-
ted. For example a small change in the charge of a QLC cell may be interpreted as 0111 in-
stead of 1000, which will introduce four bit errors in one go. The same change in the charge
of an SLC cell is so small that the two states 0 and 1 can still be correctly distinguished. So
SLC is significantly more safe and will introduce less bit errors over time. This means the
NAND flash memory on F&S boards is a very reliable flash memory.

Changes in the charging state of a NAND cell can occur when writing to neighbouring cells or
even by repeatedly reading the data of the cell itself. Each read access minimally discharges
the cell, so that after many million accesses, bits may actually flip. The whole process is ac-

Linux on F&S Boards 27

Figure 16: Bit states in SLC, MLC, TLC, QLC NAND flash cells

1

0

11

00

10

01

111

110

101

100

011

010

001

000

V

0

V/2

SLC MLC TLC
1111

QLC

1000

0111

0000

Linux On F&S Boards

celerated by heat, so if the flash memory is used in a very warm or even hot environment,
the data retention time decreases.

However this is not a permanent damage. If the charge is renewed, then the cell will work
again as before. This is why F&S has introduced a so-called Block Refresh procedure in the
bootloaders that renews the data cells of a region if the bit error count is getting too high.
F&S also uses filesystem variants that do similar actions.

NAND flash has a limited number of erase cycles. Depending on the NAND flash type, this
may be in the range of several tens of thousands (SLC) over several thousands (MLC) to
only a few hundreds (TLC, QLC). With an increasing number of erase cycles, some bits may
stop working. Which means over time, the number of bit errors within some pages will rise.
And some day, the ECC algorithm that is used will not be capable of correcting these errors
any more. In this case, this page is irretrievably damaged. In most cases the whole block is
worthless then. It can not be used without risking damage to the data. Such a block has to be
marked as bad.

In fact it is possible that right from the beginning there are some blocks that have an intoler-
able high error rate. Then the manufacturer already has marked these blocks as bad. This is
not a sign of a damaged device, it just reduces the available space slightly. The software will
handle this by skipping bad blocks when installing. Filesystems like UBIFS also keep a cer-
tain amount of blocks as reserve and will use one of the reserve blocks if a regular block be-
comes bad at run-time.

Note

Having a few bad blocks in a NAND device is completely normal and no reason for a com-
plaint. Only if the number of bad blocks is more than about 5% of the whole space, or if
there is a long sequence of bad blocks in a row, this may cause software problems.

NAND flash is usually sub-divided into smaller regions, like partitions on a Hard Disc Drive.
These regions are similarly called MTD Partitions. MTD is the short form for Memory Techno-
logy Devices, which is a Linux term for all kinds of flash memories (NAND, NOR, QSPI, etc.).

The rough structure of the MTD partition layout on F&S boards is shown in Figure 17. There
is a partition for the bootloaders NBoot and U-Boot, a partition for the Linux kernel, one for
the device tree and one for the main root filesystem. Further MTD partitions can be added ar-
bitrarily, for example for application code, application data, image or video data, log file stor-
age, etc. In fact the real layout has some more partitions, we will handle this later in the
chapter to U-Boot.

28 Linux on F&S Boards

Figure 17: Common MTD partition layout in NAND flash

NBoot U-Boot Kernel FDT Root Filesystem

Linux On F&S Boards

3.8.2 eMMC

Some boards are equipped with additional eMMC memory and some new boards use eMMC
instead of NAND for booting. eMMC works similar to an SD card, but has additional features.
For example it can use up to eight data lines (instead of four on an SD card), can use double
data rate, and the data region can be subdivided into hardware partitions.

eMMC also consists of NAND flash memory, but it also contains a built-in controller chip that
takes care of all the internal NAND flash handling. You don't have to worry about NAND
blocks, pages, OOB or ECC. So from the user point of view, you can use an eMMC memory
like a Hard Disc Drive where the data space is accessed as blocks (or sectors) of 512 bytes
each. But you have to keep in mind that it is still NAND memory with limited erase cycles,
where ECC is done, where data has to be erased before re-writing, where bits can flip and
where cell refreshing needs to be done from time to time. You just don’t see this because it
takes place in the background by the internal NAND flash controller.

In theory, eMMC memory can be built up from any kind of NAND flash memory. But in real
life, at least MLC NAND is used, sometimes even TLC or QLC NAND. This means that
eMMC provides more storage space, e.g. 4 GB or more, but also the data retention time is
not as good as on an SLC NAND flash. It can be compared to SD cards or USB sticks, that
use the same kind of NAND flash memory. So keep in mind that all those memories are less
reliable, especially when exposed to high temperatures. And it is important to power up these
devices from time to time so that the internal NAND flash controller has a chance to refresh
the memory cells.

If eMMC is equipped in addition to (raw) NAND on an F&S board, then the system still boots
from NAND, i.e. the bootloaders NBoot and U-Boot still remain in NAND flash. But all other
images like kernel, device tree and root filesystem can be stored in either eMMC or NAND
flash, as you like. Figure 18 shows a common layout. By using a partition table like Master
Boot Record (MBR) or GUID Partititon Table (GPT), the User area of the eMMC memory is
divided into (software) partitions for System (Linux kernel and device trees), roof filesystem
and other user data.

If eMMC is the only flash memory on a board, then the system will also boot from eMMC. In
this case we take advantage of the fact that the data region of an eMMC can be subdivided
into hardware partitions. Each hardware partition behaves like a separate storage device with
its own size and data that begins at sector 0.

By default, an eMMC device has already four hardware partitions: a user partition User, two
boot partitions Boot1 and Boot2, and a partition for security information called RPMB (Re-
play Protected Memory Block). But you can add up to four Generic Partitions GP1 to GP4.
The space for them is taken from the User Space. This results in up to eight partitions.

Linux on F&S Boards 29

Figure 18: Common F&S layout with NAND & eMMC

User area

MBR Boot RootFS User Data
NBoot U-Boot

NAND eMMC

Linux On F&S Boards

Partition ID Name Meaning

0 User User Space

1 Boot1 Boot information (e.g. bootloader)

2 Boot2 Second set of boot information, either backup or alternative
boot sequence

3 RPMB Security information (Replay Protected Memory Block)

4 GP1 Generic Partition 1

5 GP2 Generic Partition 2

6 GP3 Generic Partition 3

7 GP4 Generic Partition 4

Table 3: Hardware partitions on eMMC memories

Please note that changing the hardware partition layout is a write-once option for an eMMC.
It can only be done exactly once and will then remain in this state forever.

When changing the layout, the partitions can also be switched to the so-called Enhanced
Mode. In this mode, the memory cells are used in a different way, so that data is stored more
reliably, but on the cost of less available memory. In fact on most eMMCs this is implemented
by the so-called Pseudo-SLC mode. Instead of the regular MLC variant, where two bits are
stored in each cell, the cell only stores one bit in Enhanced Mode, like on a SLC cell. Of
course all regions that are switched to Enhanced Mode are only half the size then. For ex-
ample a 4 GB eMMC will only have 2 GB of available space after switching the whole data
area to Enhanced mode. The partitions Boot1, Boot2 and RPMB are in Enhanced Mode by
default to make the boot process more reliable. So there is no need to change this.

Of course you can still install a software partition table on top of each hardware partition, fur -
ther subdividing it into software partitions. Boot1, Boot2 and RPMB are rather small, so it
does not make much sense there, but it is very useful for the User partition.

Figure 19 shows the general layout for F&S Boards with eMMC only. We stay with the default
hardware partitions, but like above further subdivide the User partition into software parti-
tions. The bootloaders NBoot and U-Boot and the U-Boot Environment are stored in the
Boot1 and Boot2 hardware partitions now. The System part contains the Linux kernel and
the device tree(s).

The RPMB hardware partition is only used when working with a Trusted Execution Environ-
ment like opTEE.

30 Linux on F&S Boards

Figure 19: Default F&S layout for boards with eMMC only

Boot1User

MBR System RootFS
NBoot, U-Boot,

UBootEnv
(Copy 0)

Data

RPMBBoot2

NBoot, U-Boot,
UBootEnv
(Copy 1)

Linux On F&S Boards

Note

On PicoCoreMX7ULP there is no NBoot. So instead of NBoot, U-Boot is located in the
Boot1 hardware partition and is booted directly.

On fsimx6ul and fsimx6sx architectures, support for eMMC only modules like Pico-
CoreMX6MX and PicoCoreMX6UL was added in NBoot version 43.

3.8.3 SD Card

SD-Cards are rather similar to eMMC memory. But of course they are removable devices.
They are available in different speed grades. Default Speed and High Speed use regular
3.3 V power supply. Beginning with UHS-I, the voltage needs to be reduced to 1.8 V, so
these speeds up to 200 Mbps can only be used on boards that support voltage switching.
However UHS-II cards for still higher speeds need a completely different slot design with ad-
ditional differential signals. These signals are not available on the SD card slots on F&S
boards, which means these cards can only be used in compatibility mode with the standard
set of signals and do not profit from their higher speed.

Please note that the speed is not coupled with the memory size of the card (SDHC, SDXC).
A regular SD card is not automatically restricted to regular speed and an SDHC High Capa-
city card does not automatically support High Speed. There may also be regular SD cards
that can handle High Speed and High Capacity cards that can only handle regular speed.

SD cards can be used on F&S boards to store data on them, like eMMC. Preparing the data
is also rather similar and you can use regular partition tables for software partitions, similar to
Figure 18. But there are no hardware partitions, there is only one large region of data, like
the User partition on eMMC. And the cards do not support Enhanced Mode. Which means
the data on an SD card is not stored as reliably as on eMMC in Enhanced Mode or as on
SLC NAND.

Important

The slot concept of SD cards only works properly if the card is removed from the slot from
time to time. Then the contact springs of the slot and the contact pads of the card will
grind clean again. If this does not happen and the card remains in the slot for a long time,
the contacts will corrode and sooner or later communication problems with the card will
arise, making the whole system unstable. This is extremely annoying if it happens after a
few years and you have to exchange the card in the field. Therefore, F&S does not recom-
mend installing the system software (kernel, device tree, root filesystem) on an SD card.
Instead you should use the soldered on-board NAND or eMMC.

3.8.4 USB Media

F&S boards do support USB mass storage devices. Whether these devices are based on
real rotating discs (HDD) or on NAND flash media (SSD or USB sticks/pen drives) does not
matter. They are all handled in the same way. For NAND media, the same restrictions apply
as before. For example you should activate them from time to time to give the internal NAND

Linux on F&S Boards 31

Linux On F&S Boards

flash controller a chance to refresh the data cells. Rotating discs on the other hand are sus-
ceptible to impacts, for example when used in portable devices.

USB devices are well-suited to provide large amounts of data like videos, pictures or other
graphical data. Or you can use them for installing the system software in production or for
updating the software in the field. There is quite some support for this in U-Boot. There are
no hardware partitions on USB devices, only software partitions. A partitioning scheme when
using USB for the system software would look similar to Figure 18, but again F&S does not
recommend this for similar reasons as on SD cards.

32 Linux on F&S Boards

Working With NBoot

4 Working With NBoot
NBoot, which is short for “Native Boot”, is a small first-level bootloader. It is loaded by the
native loading mechanism of the ROM-Loader of the SoC and is running before the main
bootloader, typically U-Boot (see Figure 20). NBoot is always pre-installed on every board
that is shipped from F&S, like a BIOS on an x86 platform. In most cases, the user does not
have to worry about it and unless in some rare cases, it does not need to be changed or up-
dated in any way.

At this early stage in the boot process, no Dynamic RAM is available yet, which is why the
ROM- Loader has to load this code to some internal On-Chip RAM. This On-Chip RAM is
typically limited in size and would be too small for the whole U-Boot, which explains why this
extra step is necessary.

The first task of NBoot is to activate DRAM and all other peripherals that are needed to load
U-Boot. The second task is to actually load U-Boot itself and check its integrity, for example
by validating the signature in case of Secure Boot. On newer architectures, also additional
files like board-configurations, DRAM timings and training data, firmwares for companion
chips, the ARM Trusted Firmware (ATF) and the Trusted Execution Environment are loaded
in this stage. Of course all these images need to be checked for validity, too. And finally,
NBoot starts U-Boot.

So NBoot is actually getting more and more complex. It is handling all the low-level stuff
where the user is typically not interested in, it serves as a Secure Boot hub and it also helps
in the production process for the first time installation, for example by providing functions to
blow one-time configuration fuses.

Note

The PicoCoreMX7ULP has no NBoot. To be able to use special concepts like low-power-
boot and parallel boot of Cortex-A and Cortex-M cores, we have decided to keep the boot
process as similar as possible to the way NXP does it. So if you are using this board, you
can skip this whole chapter.

Linux on F&S Boards 33

Figure 20: NBoot boot stage

NBoot

U-Boot

ROM-Loader

Working With NBoot

As already said, NBoot activates the Dynamic RAM (DDR) and NAND or eMMC flash on the
board. Because these memory chips are often only available for a short period of time before
going end-of-life, F&S has validated a whole variety of these chips and even new RAM or
flash types are added from time to time. This may require modified activation sequences and
therefore a new NBoot version. The advantage of hiding this initialization in NBoot is that no
other software component needs to be changed in such cases.

It is rather common to never touch NBoot and leave it at the version that was shipped with
the board. This NBoot can definitely handle all hardware aspects of this board. However up-
dating NBoot does not do any harm. Every new NBoot should be fully compatible to the pre-
vious versions.

Please note

Never ever do a downgrade of NBoot. If a board is equipped with a new version of NBoot,
then this might be needed by new RAM or flash components that are mounted on this
board. If you downgrade NBoot, the older NBoot version may not be capable of initializing
these components and the board may fail to boot. Then you might have to send in the
board for repair.

In the past on our 32-bit architectures, NBoot was a proprietary software developed by F&S.
But starting with our 64-bit boards, NBoot was converted to be based on U-Boot’s SPL. As an
effect, the usage of NBoot currently differs between ARM32 and ARM64. We are working on
porting more and more stuff from the old version to the new version, but this is work in pro-
gress and is not fully completed yet.

In the following sub-chapters, we will discuss the usage of NBoot on ARM32 and ARM64.

4.1 NBoot on ARM32 (Vybrid, i.MX6)

The F&S boards and modules based on 32-bit CPUs are also available with Windows Em-
bedded Compact. The same NBoot is used for Linux and Windows Embedded Compact and
only after NBoot, the boot process splits up. Windows uses a main bootloader called EBoot
and then starts the Windows operating system, while Linux uses U-Boot as main bootloader
and then starts the Linux operating system.

NBoot provides a common way to install the main bootloader on the board, no matter what
architecture the board has. As long as NBoot is on the system, you do not need any architec-
ture specific hardware or software tools to install the Linux system. You can always download
the main bootloader with a serial cable or a USB cable. When erasing the memory, NBoot is
supposed to stay on the board.

4.1.1 Entering NBoot

NBoot usually works completely invisible. You will not see a single byte of output from it un-
less there is some error, for example if there is no valid main bootloader installed. Or of
course if you want to stop deliberately in NBoot. That is what we want to do now.

34 Linux on F&S Boards

Working With NBoot

Open the serial connection in your terminal program. Then press and hold key s (lower-
case S). While holding this key, switch on power of the board (or press the reset button). This
should bring you to the NBoot menu. You will see something like this (output is taken from
efusA9, the real messages may vary slightly depending on the software version):

F&S Nand Loader VN38 built Jul 15 2019 11:20:16

efusA9 Rev. 1.20

...

Please select action

'd' -> Serial download of bootloader
'E' -> Erase flash
'B' -> Show bad blocks

Use NetDCUUsbLoader for USB download

Listing 1: NBoot menu

This means you have three choices now. Show a list of bad blocks by pressing B (upper-
case b), erase everything but NBoot itself from the flash memory by pressing E (upper-
case e) or download a bootloader file from the PC. In the latter case you can do this either
via the serial cable by pressing d (lower-case D) or via a USB cable with the help of a Win-
dows Tool from F&S called NetDCUUSBLoader. The following sections will show these op-
tions in more detail.

Please note that the menu depends on the context. For example after you have downloaded
a bootloader image, the menu shows additional entries.

4.1.2 Show Bad Blocks

The NAND flash memory on the board is used as a kind of hard disc replacement, i.e. at
least NBoot and U-Boot are stored there. In the default configurations, also the Linux kernel,
device tree and the root filesystem is stored there, but it is also possible to locate those
somewhere else.

As shown in chapter 3.8.1, NAND flash memory is rather inexpensive because it does not
guarantee that really every bit works perfectly. It is simply assumed that some bits or even
whole blocks may be damaged. While bits can be corrected by using ECC (Error Correction
Codes) and do not matter much, bad blocks can not be used at all and thus reduce the
amount of available memory. So it might be of interest to know how many bad blocks there
are.

NBoot command B (upper-case b) shows the list of blocks that are marked bad. So typing
character B in the terminal program will give something like this:

Bad blocks: None

Of course if there are any bad blocks, you will see the block numbers here.

Linux on F&S Boards 35

Working With NBoot

4.1.3 Erase Flash

NBoot command E (upper-case e) erases the whole flash memory. This includes all Linux im-
ages (kernel, device tree, root filesystem, any own partitions), U-Boot and the U-Boot envir-
onment. So only do this if you really know that you do not lose any important data. Of course
NBoot itself will be preserved and remains in NAND flash (see Figure 21).

While erasing, the progress is shown by an increasing number of dots, one dot for each
erased block.

Erasing..
...
...
...
...
...
...
...
...
..Done

Note

If the whole NAND flash is erased in this way, also the MAC addresses for network
devices are lost. They are stored in the U-Boot environment and this environment is
erased, too. So please do not forget to create appropriate environment variables again
after U-Boot is re-installed. Please refer to the U-Boot chapter for this.

4.1.4 Serial Download

NBoot command d (lower-case D) will start the serial download. You can download any boot-
loader image, U-Boot for Linux, EBoot for Windows Embedded Compact and even a new
version of NBoot itself. After having pressed the key, you have 60 seconds to start the down-

36 Linux on F&S Boards

Figure 21: NAND flash erase command

NBoot

U-Boot

Linux-Kernel

Root FIlesystem

erased

preserved

Working With NBoot

load in your terminal program. If it takes longer, the download command times out and the
menu is shown again.

Note

If you forget to type d or if the download is started after the command timed out, every
byte of the sent file is interpreted as an own NBoot command. You definitely do not want
this! Just imagine that one of these commands is E.

Downloading needs to be done as a 1:1 binary download. This means each byte has to be
sent as 8-bit value to the board, without any modifications and without adding or removing
any data bytes. Normal transmission of terminal programs is often modified by adding or re-
moving Linefeed or Carriage Return characters at line endings or by converting special keys
for cursor movements (up, down, left, right, end, home) into escape sequences. Such a
download mode is not suited.

The following steps are different, depending on the terminal program that you use.

● In DCUTerm, go to File → Transmit Binary File... and open the file that you want to
download. This starts the serial download.

● In TeraTerm, go to File → Send File... and activate the Binary option checkbox. This
is important! Then open the file you want to download. This starts the serial down-
load.

● In Linux, you can copy the file directly to the serial port device. This is possible even if
the terminal program does not support a 1:1 download function. For example if your
serial port is /dev/ttyS0, just use a separate shell and enter:

dd if=ubotmx6.nb0 of=/dev/ttyS0.

Just note that you must not enter any characters in the terminal program while down-
load is in progress. The character would also be sent to the serial port and would be
inserted at a random position in the sequence of bytes. This would shift the remaining
file content and would result in a damaged and unusable download.

During download, progress is shown by an increasing number of dots and the number of
transmitted bytes from time to time.

.. 65536 Bytes

.. 131072 Bytes

.. 196608 Bytes

.. 262144 Bytes

.. 327680 Bytes

.. 393216 Bytes

.. 458752 Bytes

.. 524288 Bytes
Success, checksum: 0xaa7d

>>> U-Boot image loaded (524288 bytes) <<<

Please select action
'f' -> Save image to flash
'x' -> Execute image

Linux on F&S Boards 37

Working With NBoot

'd' -> Serial download of bootloader
'E' -> Erase flash
'B' -> Show bad blocks

Use NetDCUUsbLoader for USB download

When download is complete, you see the menu again, which now has additional entries. In
the example above, a U-Boot image was loaded, and the menu shows that you can either
save the image to NAND flash or execute U-Boot now.

4.1.5 USB Download

There is also the option to download the bootloader image via USB, which is of course much
faster. This requires a software counterpart on the PC side called NetDCUUSBLoader (see
Figure 38). Unfortunately this software is currently only available for Windows, not for Linux.
You can download this program from the Tools section of the My F&S download area on the
F&S website.

Start the NetDCUUSBLoader. Then connect the USB cable. Use the Type A connector on
the PC side and the Type B Mini connector with your board. Some F&S boards have a
Type B Micro connector or a Type C connector instead. The board will show:

Connected at high-speed

In NetDCUUSBLoader, the USB connection status should go to green, too. Then select the
file that you want to send by pressing on the three dots. Finally press Start to trigger the

38 Linux on F&S Boards

Figure 22: NetDCUUSBLoader

Working With NBoot

transmission. As you can see, in this case the initiative is going from the NetDCUUSBLoader
program. You do not need to press any key in NBoot.

NBoot will show

download complete
USB download of 524288 bytes...Success

>>> U-Boot image loaded (524288 bytes) <<<

Please select action
'f' -> Save image to flash
'x' -> Execute image
'd' -> Serial download of bootloader
'E' -> Erase flash
'B' -> Show bad blocks

Use NetDCUUsbLoader for USB download

Download only takes about one second. Then you see the menu again, which now has addi-
tional entries. In the example above, a U-Boot image was loaded, and the menu shows that
you can either save the image to NAND flash or execute U-Boot now.

4.1.6 Save Bootloader Image

Save a loaded bootloader image by pressing f (lower case F). When the image is loaded to
RAM, NBoot automatically detects the image type and shows the type every time the menu
is shown. Therefore NBoot can automatically decide where the image has to be saved in the
save command f. If an NBoot image is loaded, NBoot replaces its own code. This is possible
because NBoot is actually running from RAM in that moment and only the NAND data is re-
placed. The currently running NBoot will continue to run until a downloaded image is started
or the whole board is restarted.

Saving an image should show something like this. Of course the message can differ depend-
ing on the type of loaded image.

Saving U-Boot to NAND
Success

The image still remains in RAM. So it still can be started directly with command x.

Note

The type check of an image is not very sophisticated. If it has the correct size and a cor-
rect ID (some magic number near the beginning of the file), it is assumed to be a valid im-
age. This can be misleading, though. For example all bootloaders for all variants of i.MX6
SoCs have the same size and same ID. So it is possible to store an image for an fsimx6ul
U-Boot on a regular fsimx6 board. Of course this will not result in a working system.

This is especially dangerous if the image is an NBoot image. If you happen to download
the wrong NBoot image, the board will not boot anymore afterwards and may have to be
sent in for repair. Therefore be particularly careful when updating Nboot.

Linux on F&S Boards 39

Working With NBoot

To save the U-Boot a valid MBR and FAT partition must be present. You can create empty
partitions in NBoot with the command w (lower-case W). (Refer to Chapter 4.1.8)

4.1.7 Execute Bootloader

If a valid bootloader image is loaded, it can be executed by command x (lower-case X). If the
loaded image was an NBoot image, this will immediately start the new instance of NBoot. If
the image was a regular main bootloader image like U-Boot, then execution is passed on to
this bootloader. No further output is visible in NBoot.

4.1.8 Create Partitions

For eMMC only devices a FAT partition and MBR must be present at the User partition to
write U-Boot. To initialize the partitions press w (lower-case W). Automatically a FAT partition
with the size 40 MB and an ext4 partition with the size of 800 MB will be created. You can
define more partitions with partition type and size (e.g. 0x83 for ext4 and 40960 for 40 kB).
The characters typed in will not show on the terminal. If you don’t need any further partitions,
you can simply press Enter without typing in values for type and size. When all partitions are
defined, a prompt is shown to validate the writing of the partitions. This will result in overwrit-
ing any current partition table.

Create MBR
Creating boot partition 0 (FAT16, 40MiB)
creating partition 0 with type 0x06 and size 40 MiB
Creating rootfs partition 1 (Linux, 800MiB)
creating partition 1 with type 0x83 and size 800 MiB
enter additional data partition 2
filesystem type:filesystem size in MiB:
WARNING: writing the MBR will delete all data!

Enter 'y' to proceed, any other key to exit
writing MBR
writing FAT

4.1.9 Access Partitions with USB

If a valid MBR (Master Boot Record) is stored in User partition of eMMC, the NBoot can
emulate partitions as an USB-Stick by executing the command Z (upper-case Z). The follow-
ing message is shown, indicating that MSD (Mass Storage Device) is enabled.

enable MSD

If the USB port is connected, every partition on the User partition will be registered by the
Host-PC as an USB-Stick.

40 Linux on F&S Boards

Working With NBoot

4.2 NBoot on ARM64 (i.MX8)

The boot process on ARM64 is rather more complicated than on ARM32. This is shown in
Figure 23.

The new boot process allows more complex systems to be set up, for example with different
operating systems controlled by a Hypervisor. This requires to have limits on what each oper-
ating system is allowed to do. For example if one operating system wants to change the
clock speed of a CPU Core, this may contradict with the idea of what the other operating sys-
tem wants to do. So if any of these two operating systems would be allowed to do this
change itself, it would also change the behaviour of the other operating system, too. This
must not be allowed. So we need a moderator who keeps track of what both operating sys-
tems want and then in the end actually performs the desired task like changing the clock
speed. This is the point where the ARM Trusted Firmware (ATF) and the Trusted Execution
Environment (TEE) come in. By running in high Execution Levels (EL2 and EL3), only these
instances have access to all the hardware that is shared, like CPU Cores, the operating sys-
tems themselves are running on a lower Execution Level (EL1) with only restricted access to
that hardware.

And there are even more software parts involved. This results in the following list of images,
that is not comprehensive and always depends on the type of SoC.

● Second Program Loader (SPL)

● ARM Trusted Firmware (ATF)

● Trusted Execution Environment (TEE)

● DRAM timing and training data

● Firwmares for companion chips (SCU, SECO, HDMI)

● Board-specific configuration information (BOARD-CFG, BOARD-ID)

● U-Boot

Most of this stuff is very low-level and the typical user is not interested in this at all. The
board simply should start, no matter how this works in full detail. This is the reason why we
also will not go into more detail here. Apart from U-Boot, we have put all the other stuff in our
NBoot and this is again pre-installed on each board that is shipped. So as a user, you do not
have to care about all this low-level stuff. You just need to install your Linux system and, if
necessary, your own U-Boot. Nothing else.

Linux on F&S Boards 41

Figure 23: ARM64 (ARMv8) boot process and Execution Levels

ROM-Loader (BL1) SPL (BL2) ATF (BL31)

TEE (BL32)

U-Boot (BL33)

EL3

EL2

EL1

Working With NBoot

4.2.1 Handling NBoot

NBoot on ARM64 is based on U-Boot’s SPL. So when the system boots, NBoot will show a
short SPL greeting message before quietly loading all the software parts and starting U-Boot.
So the next message is already U-Boot showing up.

Different to the ARM32 variant, NBoot on ARM64 does not support a menu yet. So it is not
possible to stop in NBoot and execute all the interactive commands that are available on
ARM32. On ARM64, NBoot definitely needs an U-Boot to perform a successful boot. If U-
Boot is lost, NBoot alone is not capable of installing anything again. In that case, it requires
additional software tools like the USB installation program uuu to restore the board.

So actually there is not much to tell here, the whole installation process is explained later in
the next chapters as part of U-Boot.

42 Linux on F&S Boards

Working With U-Boot

5 Working With U-Boot
The bootloader U-Boot actually started as PPC-Boot, which was a bootloader for PowerPC
based SoCs. At some point in time, support for other CPU architectures like ARM was added,
and the bootloader was renamed to Universal Boot, or U-Boot for short. “U-Boot” is also the
German word for a submarine. So this is a nice wordplay because a submarine remains in-
visible under the surface and only comes up to load new supplies, like a bootloader remains
invisible in normal life and only comes to view when new images are to be loaded.

U-Boot is used for downloading and storing all necessary binary images (kernel, root filesys-
tem, etc.) on the board, handles the basic system configuration, and is responsible for ex-
ecuting the Linux Operating System.

5.1 Entering U-Boot

To work with U-Boot, you also need the serial connection to the board and the terminal pro-
gram. See Chapter 3.2 on page 14 for instructions how to do this. When the board is
switched on, the first output that you see on the serial connection is from U-Boot.

U-Boot 2018.03 (Aug 16 2019 - 17:12:21 +0200) for F&S

CPU: Freescale i.MX6DL rev1.3, 996 MHz (running at 792 MHz)
CPU: Extended Commercial temperature grade (-20C to 105C)
Reset: POR
Board: efusA9 Rev 1.20 (LAN, eMMC, 2x DRAM)
I2C: ready
DRAM: 1 GiB
NAND: 256 MiB
MMC: FSL_SDHC: 0, FSL_SDHC: 1, FSL_SDHC: 2
Loading Environment from NAND... OK
In: serial
Out: serial
Err: serial
Net: FEC [PRIME]

Hit any key to stop autoboot: 3

The number at the end of the last line slowly counts down. To enter U-Boot, you have to send
an arbitrary character on the serial line to the board before the count reaches zero. This
brings you to the command line interface of U-Boot.

If you do not press a character, the system will try to boot Linux. If this fails, you will also be
brought to the U-Boot command line. Otherwise the Linux system will come up.

Remark

In the following sections we will show commands to be typed as a framed text with yellow
background. For example:

help

This means you have to type help, followed by the Return or Enter key.

Linux on F&S Boards 43

Working With U-Boot

Sometimes we also combine input and output in one yellow region. In this case, the com-
mand that has to be typed is in bold and the output of the board is shown in regular font.

efusA9 # version

U-Boot 2018.03 (Aug 08 2019 - 17:17:06 +0200) for F&S

arm-linux-gcc (for F+S boards and modules) 7.4.0
GNU ld (for F+S boards and modules) 2.31.1

This means the board shows the command prompt, consisting of the board name and a hash
mark. The command you have to type is version which is why this part is in bold. And fi-
nally the board outputs the remaining lines as result of the command.

To avoid the impression that a command is only available on a specific board, we actually
drop the board name and only take the hash mark as command prompt. So in this document,
this would in fact show as

version

U-Boot 2018.03 (Aug 08 2019 - 17:17:06 +0200) for F&S

arm-linux-gcc (for F+S boards and modules) 7.4.0
GNU ld (for F+S boards and modules) 2.31.1

As a simple rule when entering a command, skip the hash mark # if the command is pre-
ceded by one.

5.2 Commands

U-Boot has a command line interface. Commands consist of a keyword and parameters. The
keyword tells what to do and the parameters define the behaviour of the action. A parameter
can be a memory address where to store some data, the name of a file that should be loaded
from an SD card, an IP address for a network access, an option to modify the data output,
and so on.

The following example tells U-Boot to transfer a file named rootfs.ubifs via TFTP pro-
tocol from a TFTP server with IP address 10.0.0.5 to the board and store the content in RAM
at address 0x11000000.

tftpboot 0x11000000 10.0.0.5:rootfs.ubifs

Commands may be abbreviated, as long as they are unambiguous. So the above command
tftpboot can also be written as tftp. And addresses are automatically interpreted as hex
values, so the 0x can also be omitted. So the following command does the same:

tftp 11000000 10.0.0.5:rootfs.ubifs

U-Boot also has a default load address. So if the address in RAM does not matter, it can also
be omitted and the file is loaded to the default load address. Usually the IP address of the
TFTP server is also well known (by setting an environment variable), so the above command
can be further simplified to the following command which is much easier to type:

tftp rootfs.ubifs

44 Linux on F&S Boards

Working With U-Boot

The following Table 4 shows an incomprehensive list of available U-Boot commands.

Command Function

setenv Set environment variables (command line, network parameters, ...)

saveenv Store environment to persistent storage (NAND)

mtdparts Access MTP partitions (add, delete, show, ...)

nand Access NAND flash (read, write, info, bad blocks, ...)

ubi Access UBI volumes (create, remove, read, write, ...)

usb Access USB storage devices (select, show, read, write, ...)

mmc Access MMC/SD card devices (select, show, read, write, …)

tftpboot/nfsboot Load from TFTP/NFS server (Ethernet)

ls List files on media with a filesystem (FAT, EXT2/4, UBIFS)

load Load a file from a filesystem (FAT, EXT2/4, UBIFS)

update Search for update/install/recover script and execute

bdinfo Show board information

clocks Show information on clock rates

md/cmp/cp/mw/mm Show/compare/copy/write/modify memory

source Execute a script file

fdt Manipulate a device tree

run Run commands from an environment variable

boot/bootm Start the default boot process/boot an image in RAM

help Show list of available commands or help for a single command

Table 4: Incomprehensive list of U-Boot commands

In fact the command line interface is a real small shell called hush that supports a syntax
similar to the Bourne Shell sh. For example several commands can be written as a se-
quence, separated by semicolons. It also supports conditional execution (if … then .. else
… fi, ||, &&) and loop constructs (for … in … do … done, while … do … done, until
… do … done). It can even execute script files, for example to perform complex installation
or update procedures.

Of course explaining all these shell-like features is beyond the scope of this document. More
information about U-Boot can be found at http://www.denx.de/wiki/DULG/Manual or in the
doc directory in the source code package of U-Boot. We will concentrate on some basic fea-
tures of U-Boot and on special features only available on F&S boards.

Linux on F&S Boards 45

http://www.denx.de/wiki/DULG/Manual

Working With U-Boot

5.3 Command History

U-Boot remembers the last few commands that you typed. So if you want to repeat a previ-
ous command, simply use the keys Arrow Up ↑ and Arrow Down ↓ to bring back one of the
previous command lines. Then you can modify the command and execute it again by press-
ing Return. This may speed up your work considerably.

Unfortunately this command history is not saved permanently and the list is also not very
long, so you only can select from the last few commands of the current session.

Note

To use the command history, the terminal program needs to support ANSI escape se-
quences for the cursor keys. This is true for PuTTY, TeraTerm and minicom, but not for
DCUTerm.

5.4 MTD Partitions

If the board is equipped with NAND flash, then the NAND flash is used for many different pur-
poses. The binaries of NBoot, U-Boot, the Linux Kernel and the root filesystem are stored
there at specific positions. For example on the fsimx6 architecture, the Kernel image is
stored at offset 0x240000 and can use up to 0x800000 bytes, i.e. 8 MB. When we want to
read this region from NAND flash to RAM, we can use the following command:

nand read $loadaddr 240000 800000

But as it would be cumbersome to memorize all the starting offsets and sizes of all these re-
gions, especially as these values may change with a new release, the regions have been
given meaningful names. For example the kernel region has been given the name Kernel.
So instead of typing the NAND flash offset and the size in NAND commands, you can simply
use the region name. This makes working with these regions much easier. For example the
above command can be simplified to

nand read $loadaddr Kernel

Actually with this definition, these regions divide the NAND flash into partitions like on a Hard
Disc Drive. These regions are therefore called MTD partitions.

With command mtdparts, you can add or remove such partitions, or list the current MTD
partitions. Please note that the command mtdparts does not actually change anything in
NAND flash itself, it just refers to a list of names, offsets and sizes that it has set up in RAM.
There is also no partition table in the NAND. The list is only stored in an environment variable
called mtdparts. So you need to save the environment to make changes permanent.

In Chapter 3.8.1, we have already seen the rough MTD partition layout on F&S boards. Fig-
ure 24 shows the real layout in more detail. The sizes are not proportional, TargetFS is ac-
tually much bigger than all other partitions together.

46 Linux on F&S Boards
Figure 24: Detailed MTD partiton layout on F&S boards

NBoot UBoot Kernel FDT TargetFSUser
Def

Re
fresh

UBoot
Env

Working With U-Boot

Even if the layout is rather similar on most F&S boards, the start offsets and sizes may vary.
Table 5 shows the default partition list for fsimx6 boards. But please note that these values
may be adjusted in newer releases from time to time as needed. This is why you should
never use offsets or sizes directly, just the partition names.

Name Start Size Meaning

NBoot 0x00000000 0x00040000 Region where NBoot is stored

UserDef 0x00040000 0x000c0000 Small space for user defined configurations.
Can be used for Cortex-M4 programs on
boards with Asymmetric Multi-Processing

Refresh 0x00100000 0x00040000 Space to temporarily store blocks during the
Block Refresh procedure.

UBoot 0x00140000 0x000c0000 Region where U-Boot is stored

UBootEnv 0x00200000 0x00040000 Environment of U-Boot

Kernel 0x00240000 0x00800000 Linux kernel image

FDT 0x00a40000 0x001c0000 Device Tree image (FDT=Flat Device Tree)

TargetFS 0x00c00000 (remaining
free space)

Space for root filesystem

Table 5: NAND flash partitioning

The TargetFS partition occupies the remaining free space of the flash. Its size therefore de-
pends on the size of the NAND flash that your board is equipped with. Partition Refresh is
reserved for internal use by NBoot and U-Boot, so please do not store any data there. Parti -
tion NBoot is especially protected so that you do not unintentionally erase or modify the
NBoot bootloader. If you try to write to this partition, it will be reported as read-only and if you
try to read from it, you will only see bytes with 0xFF.

On boards equipped with a Cortex-M core for Asymmetric Multi-Processing (AMP), partition
UserDef can be used to store a Cortex-M binary. This will be loaded and executed by NBoot
at a very early stage, before even U-Boot is loaded. On all other boards, this partition is free
and you can use it for your own purposes.

Partition UBootEnv contains the non-volatile environment variables. When you call
saveenv, then the current environment is saved to this partition. If you erase this partition,
U-Boot will start with the compiled-in default environment the next time. Please note that this
will also remove the network settings, especially the MAC address(es), so you have to set
them again at the next start.

Linux on F&S Boards 47

Working With U-Boot

5.5 UBI Concepts

As already mentioned in the NBoot chapter, NAND flash is rather inexpensive. Unfortunately
this requires some effort with Error Correction Codes (ECC) and still the number of erase
cycles is limited. Now imagine the MTD partition layout of Figure 25.

In addition to the bootloader and kernel partitions (which are represented slightly simplified
here again), you would probably have a partition for your root filesystem, a partition for your
application and a partition for your data. All but the data partition could be read-only to avoid
any unnecessary erase cycles. But the data partition needs to be read-write, because you
want to store data there on a regular basis.

If you only want to write small amounts of data, a small data partition is sufficient. However
this also means, that only a small number of NAND blocks will be used for it. And if you write
rather often, then these blocks will be erased and re-written over and over again. With the
result that these blocks will be worn out some day. Your data partition will show more and
more errors, then bad blocks and eventually it will fail completely. Which is a pity, because
there are many many blocks in all the other partitions that are still in good shape. They only
have been written once or twice when the software was installed. But you can not use them
because they are in other partitions.

So from the point of data security, small partitions are desired. From the point of wear-level-
ling, large partitions are desired. This annoying contradiction is solved by using UBI.

UBI is a management layer on top of flash memories that deals with all the special issues of
these kinds of memories, especially wear-levelling. The idea is that you group as many
NAND blocks as possible and put an UBI on it. UBI will keep a list of how many times each
block was erased and will prefer blocks with low erase count over blocks with high erase
count when writing new data. All blocks of the UBI space will take part in wear-levelling, even
blocks that are marked as read-only by the filesystem.

This means a logical block will be mapped to one physical block first, but when wear-levelling
asks for, it will be relocated to a different physical block, making the previous physical block
with a low erase count available for new data writes. In the end, there are no blocks with an
excessive erase count, all blocks will have rather similar counts.

UBI makes sure that data is not lost when relocating blocks, even if the power goes down
right in the middle of writing a block. How exactly this is done is beyond the scope of this
document but some kind of atomic block replacement algorithm guarantees that the system
either sees the data on the old or the new position, so that the UBI area can always be
brought back to a consistent state without the need of a time-consuming filesystem check.

Note

48 Linux on F&S Boards

Figure 25: NAND with MTD partitions only

NBoot U-Boot Kernel FDT Root Filesystem
Data

(read-write)
Application

Working With U-Boot

Only data that was already in the NAND flash is not lost, because either the old or the new
copy is seen at the next start and UBI makes sure to take the right copy. However when
writing new data to the flash memory, Linux buffers large parts of that data in RAM first.
UBI can not prevent that such unwritten data is lost in case of a power failure. You have to
take care by your software design that times of inconsistent state are as short as possible.

Due to all these relocations, after a while it is no longer possible to say which logical block is
located on which physical block. Only UBI knows this. From an outside view, the blocks are
completely unsorted. Hence the name UBI, which stands for “Unsorted Block Image”.

UBI can subdivide its space into smaller entities called volumes. A volume is similar to an
MTD partition, but the data blocks of a volume can be located anywhere within the UBI. So
even with volumes, all blocks of the UBI area take part in wear-levelling. This is a big differ-
ence to the MTD scenario above.

This results in the common NAND layout from Figure 26. Again the bootloaders and Linux
images are located in MTD partitions. But now the whole remaining part called TargetFS is
one big UBI. And the root filesystem, application and data partitions are only UBI volumes.

As you can see, UBI is installed on top of an MTD partition. Which means we have to tell the
UBI subsystem in U-Boot, what MTD partition to use. In our case this is TargetFS.

ubi part TargetFS

ubi0: attaching mtd1
ubi0: scanning is finished
ubi0: attached mtd1 (name "mtd=7", size 244 MiB)
ubi0: PEB size: 131072 bytes (128 KiB), LEB size: 126976 bytes
ubi0: min./max. I/O unit sizes: 2048/2048, sub-page size 2048
ubi0: VID header offset: 2048 (aligned 2048), data offset: 4096
ubi0: good PEBs: 1952, bad PEBs: 0, corrupted PEBs: 0
ubi0: user volume: 1, internal volumes: 1, max. volumes count: 128
ubi0: max/mean erase counter: 7/4, WL threshold: 4096, image sequence
number: 0
ubi0: available PEBs: 0, total reserved PEBs: 1952, PEBs reserved for
bad PEB handling: 40

If TargetFS already contained an UBI, this UBI will be reused. Otherwise a new empty UBI
will be created. If creation fails, try to erase the TargetFS partition first by using the follow-
ing command. On a new device when no wear-levelling has happened, this is no problem.

nand erase.part TargetFS

Linux on F&S Boards 49

Figure 26: NAND layout with UBI volumes

NBoot U-Boot Kernel FDT

TargetFS

Root filesystem
(read-only)

Application
(read-only)

Data
(read-write)

MTD Partitions UBI with Volumes

Working With U-Boot

Note

In general, erasing an MTD partition with a valid UBI on it is not a good idea. UBI relies on
the fact that it keeps a list of erase counts. If you low-level erase the MTD partition, these
erase counts are lost which means all subsequent wear-levelling is based on wrong data.
So especially if the device has already been in operation for some time, do not erase such
a partition unless really really necessary and everything else has failed.

After the partition is linked to the UBI subsystem, you can list existing volumes:

ubi info layout

Volume information dump:
 vol_id 0
 reserved_pebs 1908
 alignment 1
 data_pad 0
 vol_type 3
 name_len 6
 usable_leb_size 126976
 used_ebs 1908
 used_bytes 242270208
 last_eb_bytes 126976
 corrupted 0
 upd_marker 0
 name rootfs

Volume information dump:
 vol_id 2147479551
 reserved_pebs 2
 alignment 1
 data_pad 0
 vol_type 3
 name_len 13
 usable_leb_size 126976
 used_ebs 2
 used_bytes 253952
 last_eb_bytes 2
 corrupted 0
 upd_marker 0
 name layout volume

This shows a volume called rootfs and a special internal layout volume that is used to
manage all volumes. This internal volume can be compared to a partition table that holds in-
formation about the available partitions, or volumes in this case.

This setup is the default configuration on F&S boards. The whole UBI on the TargetFS par-
tition is defined as one big volume rootfs that holds the root filesystem for Linux. We will
now create a different layout with three volumes, like in the example above.

50 Linux on F&S Boards

Working With U-Boot

Name Size Meaning

application 0x01400000 Application code, read-only data (20 MiB)

data 0x00A00000 Read-write Data, log files, configurations (10 MiB)

rootfs Remaining space Root filesystem, system commands, libraries

Table 6: Different UBI volume layout

The first step is to remove the previous volume rootfs. Of course this will make the previ-
ous content unavailable, so be careful to back up all data first that you still need.

ubi remove rootfs

Remove UBI volume rootfs (id 0)

Then we add the new volumes. All volumes but the last need a specific size. If the size argu-
ment is not given, the volume will use all remaining free space of the UBI, which only makes
sense for the last volume, because after that there is no more space for further volumes.

The sequence of creation does not matter much, because all the data will be stored in an un-
sorted heap anyway. We use rootfs as last volume because in our example this is the
volume that takes the remaining free space.

ubi create application 0x01400000

Creating dynamic volume application of size 20971520

ubi create data 0x00a00000

Creating dynamic volume data of size 10485760

ubi create rootfs

No size specified -> Using max size (210653184)
Creating dynamic volume rootfs of size 210653184

An UBI volume is only the space to store some data in it. It is not a filesystem. Theoretically it
would be possible to store an arbitrary filesystem image in an UBI volume. However most
filesystems like FAT or EXT4 are not aware of the fact that they run on flash memory. They
write data more often than necessary and do not group data in chunks that help to reduce
write and erase cycles. And some of these filesystems, for example FAT, are very vulnerable
if they are simply switched off. They will get into an inconsistent state and need a time-con-
suming check at the next start before they can be used again. This would somehow counter-
act the idea of UBI that is more stable in such situations.

Therefore, UBI is used either with read-only filesystems such as Squashfs, or with UBIFS, a
filesystem which has been especially designed for UBI.

U-Boot is not capable of creating a filesystem image by its own. Neither for EXT2 or EXT4,
nor for FAT or UBIFS. It always needs pre-made filesystem images, which then only need to
be stored on the board. But if an UBIFS is available in a UBI volume, then U-Boot can ac -
cess the files in it. We will see later in the high-level filesystem access how this is done.

Linux on F&S Boards 51

Working With U-Boot

5.6 Environment

Configuration in U-Boot is done by setting variables. The set of all variables is called environ-
ment and can be stored in flash so that it is again available at the next start. In case of NAND
flash, it is stored in MTD partition UBootEnv. In case of eMMC, it is stored at some specific
offset in the Boot1 hardware partition.

The environment is handled by the command env. However most env commands have an
alias for historical reasons, and actually most people still use these aliases nowadays. So we
will also use the aliases in our examples.

5.6.1 Environment Variables

A variable is set to a value with the command

env set <variable> <value>

However the alias setenv is more common.

setenv <variable> <value>

The <value> is basically an arbitrary string. For example the following command will set
variable my_var to the value “Hello world”

setenv my_var Hello world

The value of a variable can be shown with command

env print <variable>

Again the alias printenv is more common. For example

printenv my_var

my_var=Hello world

This shows that the current value of my_var is the string Hello world. The command

printenv

without any parameters will list all variables. Well, nearly all. A variable name starting with a '.'
character (dot) denotes a so-called hidden variable. Hidden variables are not shown in this
list. If you want to see these variables, too, you have to use:

printenv -a

This will show all variables, visible or hidden. F&S uses the hidden feature for the boot
strategy variables. There are quite a lot of them and if they were visible all the time they
would overcrowd the variables list unnecessarily and make it less legible.

Removing a variable is done by providing an empty value in the setenv command. So

setenv my_var

will remove the variable my_var again that was set above.

52 Linux on F&S Boards

Working With U-Boot

5.6.2 Special Variables

Some variables have a special meaning for U-Boot and require a special syntax. Setting
them will have an immediate effect on U-Boot. For example the variable baudrate holds the
baud rate of the serial communication line. The value can only be a valid number for a serial
baud rate like 19200, 38400 or 115200. Setting a new value with

setenv baudrate 19200

will immediately switch to the new speed of 19200 bps, so you would have to adapt the
speed setting of your terminal program, too.

Some variables are also automatically set or modified when specific commands are ex-
ecuted. For example the set of currently active MTD partitions is held in a variable called
mdtparts. Each time when the mtdparts command is used to modify the partition table,
the mtdparts variable is automatically updated to reflect the new state. If you show the con-
tent of this variable with ...

printenv mtdparts

mtdparts=mtdparts=gpmi-nand:256k(NBoot)ro,768k(UserDef),
256k(Refresh)ro,768k(UBoot)ro,256k(UBootEnv)ro,8m(Kernel)ro,
1792k(FDT)ro,-(TargetFS)

… you will see that it is a rather long string with a strange syntax. In fact this is the same syn-
tax that is required for the Linux kernel command line, which makes this variable quite handy
for this purpose.

Table 7 shows some basic U-Boot environment variables. You may need to adapt some of
them to reflect your local environment. For example you usually have to modify the network
variables to be compatible with your local network.

Variable Meaning

ipaddr The IP address of your board

serverip The IP address of your TFTP and/or NFS server (usually your develop-
ment PC)

gatewayip The IP address of your gateway; the device in your network that knows
how to access the internet (usually your router)

netmask The network mask used for your network (usually 255.0.0.0 for local
network 10.x.x.x or 255.255.255.0 for local network 192.168.n.x)

ethaddr MAC address of your board.

bootcmd Boot command; this command will be executed when typing command
boot or when you let U-Boot boot automatically

mtdparts NAND flash MTD partitions

loadaddr RAM address to load any images to/from

fdtaddr RAM address to load the device tree to

Linux on F&S Boards 53

Working With U-Boot

Variable Meaning

bootargs Basic kernel parameters

bootfile Default name of the kernel

bootfdt Default name of the device tree

bootdelay Number of seconds to wait for a keypress before booting automatically

arch Architecture of your board, i.e. fsimx6

filesize The size (in hex) of the last file loaded

platform Platform name, e.g. armstonea9, qblissa9, picomoda9, efusa9

mmcdev The MMC port where the system boots from (typically the eMMC port)

preboot A command that is executed before the board is booted.

Table 7: Important U-Boot settings

5.6.3 Save the Environment

If you change the content of environment variables with setenv, this is only valid for the cur-
rent session. At the next start the previous environment would be activated again. If you also
want to save the new settings for the future, then you have to use saveenv.

saveenv

Saving Environment to NAND... Erasing NAND…
Erasing at 0x220000 -- 100% complete.
Writing to NAND... OK

OK

As you can see, this will store the environment in NAND flash in MTD partition UbootEnv.

If you have played around with the environment and want to go back to the original state,
then simply type

env default -a

This will return all variables to their compiled in default state. Please note that on F&S
boards, some variables will have the value undef now. You have to restart the board to get
them set to their board-specific value again. Of course this will also remove the MAC address
stored in variable ethaddr. You have to set it again to the correct value. This is handled in
Chapter 5.7.

5.6.4 Using Variables in Commands

The value of a variable can also be referenced in other commands by preceding the variable
name with a $. Then the content of the variable is substituted at this place. For example the
variable loadaddr holds the default load address as a hex number. This address is auto-

54 Linux on F&S Boards

Working With U-Boot

matically used in many commands if the address parameter of the command is omitted.
However the syntax of some commands does not allow omitting the address parameter. In
this case you can use $loadaddr to refer to this default address. We have already seen this
above in the command to load the Kernel MTD partition.

nand read $loadaddr Kernel

Here the content will be stored at the default address in RAM.

The name of a variable may additionally be enclosed with curly brackets { }. This is con-
venient if the scope of the name would be ambiguous otherwise. For example if you have a
variable called state and you want to print the state with the string "_mode" appended to
the content, you have to write it as

echo ${state}_mode

because

echo $state_mode

would search for a variable named state_mode.

5.6.5 Running Commands in a Variable

Some commands have to be typed over and over again. For example the sequence to down-
load a kernel and to store it to the Kernel MTD partition:

tftp zImage
nand erase.part Kernel
nand write $loadaddr Kernel $filesize

In fact it is possible to store this sequence in an environment variable and run it at any time.
We will use a variable with the simple one-character name r:

setenv r tftp zImage\; nand erase.part Kernel\; nand write \$loadaddr Kernel \$filesize

Here you have to note two things. First we “quote” the semicolons with a backslash \. Other-
wise the semicolon would denote the end of the setenv command and the remaining part of
the command would be executed immediately. By quoting, we remove the special meaning of
the semicolon as end-of-command marker and a single semicolon is inserted in the variable
content.

And secondly we have also quoted the $ from the variable names loadaddr and file-
size. Again, if we do not do this, the current content of the variable would be inserted into
the command right now. But we want the content to be inserted later, when we actually ex-
ecute the command sequence. So here again a quoting backslash.

Now we can execute this sequence of commands at any time with

run r

This even works recursively. So you can run a variable that in turn runs the contents of an-
other variable. F&S uses this concept for the boot strategies. And U-Boot is implicitly using
this, too. For example when booting the board, the content of variable bootcmd is automatic-
ally run.

Linux on F&S Boards 55

Working With U-Boot

5.7 Network Configuration

When working with a network device like Ethernet, we need to configure a few things. First of
all the network device needs a MAC address. MAC addresses are unique around the whole
world, each network device needs its own address. These addresses are administered by
IEEE. MAC addresses may either be built in a network device, or they may have to be
provided externally. F&S has obtained a pool of MAC addresses from IEEE and assigns one
or more addresses to each board. If a board has one network device, it gets one MAC ad-
dress, if it has two network devices, it gets two (subsequent) MAC addresses, and so on.

Hardware MAC addresses are independent of the network protocol that is used on the
device. However in most cases we will use the Internet Protocol. This protocol uses an own
layer of addresses, the so-called IP addresses. Globally visible devices also need a unique
IP address, but devices that are only part of a local network can be assigned a dynamic ad-
dress, usually by querying a DHCP server. So a device may have one IP address at one day
and a different IP address at another day.

In practical life, nobody uses IP addresses directly. Instead internet names (URLs) are used.
The system software will then query a name server to resolve the name, i.e. convert internet
names to an IP addresses and vice versa. For example at the time of writing, the IP address
of the F&S web server www.fs-net.de was 94.130.76.119.

U-Boot is only capable of IPv4 protocol, not IPv6. And it is not capable of talking to a name
server. This means we have to deal with IP addresses directly. DHCP is only possible in a
very restrictive way when using TFTP.

MAC addresses as well as IP addresses are stored in the U-Boot environment. If the environ-
ment was lost, for example by erasing the whole NAND flash with E command in NBoot or by
erasing the UBootEnv MTD partition, then it is mandatory to set at least the MAC
address(es) again.

5.7.1 Set MAC Address

Each network device needs its own MAC address. U-Boot can only handle Ethernet based
network devices, but Linux also uses WLAN or Bluetooth devices that may also need MAC
addresses. F&S uses the U-Boot environment to store all these MAC addresses, also those
needed for non-Ethernet devices. U-Boot will pass on these values to Linux via the device
tree.

If one MAC address is needed, it is stored in variable ethaddr. If a second MAC address is
required, it is stored in variable eth1addr. If a third MAC address is required, it is stored in
variable eth2addr. And so on. As you can see, the entry for the first address unfortunately
does not follow the naming rule of the other variables. For historical reasons this variable is
called ethaddr instead of eth0addr.

A MAC address consists of twelve hexadecimal digits (0 to 9 and A to F), that
are often grouped in pairs and separated by colons. The first six digits for
F&S boards are always the same: 00:05:51, which is the official MAC ad-
dress code for the F&S company. The remaining six digits can be found on
the 2D-bar-code sticker directly on your board (see Figure 27). The full MAC
address for this sticker would be 00:05:51:07:93:4B.

56 Linux on F&S Boards

Figure 27: Bar-
code sticker

http://www.fs-net.de/

Working With U-Boot

If a board needs more than one MAC address, the sticker only mentions the first address.
The remaining addresses are then the consecutive MAC addresses, i.e. the addresses
where the last number is increased by one each. F&S uses stickers of different colours to de-
note how many MAC addresses are available.

● A white sticker is for one MAC address

● A yellow sticker is for two MAC addresses

● A pink sticker is for three MAC addresses

● An orange sticker is for four MAC addresses

The following example sets two MAC addresses and stores the current environment (includ-
ing the newly set MAC addresses) in NAND flash. Of course you have to replace xx:yy:zz
with the six hex digits from the bar-code sticker on your board. And in the second command,
you have to determine the next higher value zz+1 and directly type the result. U-Boot can not
do any arithmetic on MAC addresses.

setenv ethaddr 00:05:51:xx:yy:zz
setenv eth1addr 00:05:51:xx:yy:zz+1
saveenv

Warning

If you do not set these unique addresses, default addresses are used that are the same
for all boards of this type. This will definitely lead to problems in real networking scenarios.

Do not use more addresses than the colour of the sticker allows. Any subsequent ad-
dresses are used by other F&S boards.

Remark

Some customer specific boards may have the MAC addresses pre-programmed in the fuses
(OTP Memory) of the SoC. Here the appropriate variables will always be set automatically,
even if the NAND flash is erased. You can still override this by setting the ethaddr variables
manually.

5.7.2 Set IP addresses

IPv4 addresses are built from four numbers from 0 to 255, separated by dots. Examples
would be 10.0.1.122 or 192.168.1.1.

When downloading files, at least two devices are involved: the server that sends the file and
the client that receives the file. In our case, the server is often the development PC and the
client is the board. However if server and client are not in the same subnet, a third device is
involved: the gateway. The gateway is the one device in the local subnet that knows how to
get outside of the subnet to other destinations. So we need to configure up to three IP ad-
dresses in variables serverip, ipaddr and gatewayip.

However, the local client also needs another piece of information, namely whether the re-
mote station is in the local subnet or not. This is done by setting the netmask variable. The
local and the remote IP addresses are each bitwise AND-combined with netmask. If the res-

Linux on F&S Boards 57

Working With U-Boot

ults are the same, both devices are in the same subnet and can talk directly to each other. If
the results differ, then the devices are in different subnets and must go via the gateway to
communicate.

Example 1

The board with ipaddr 10.0.0.252 should download files from the server with serverip
10.0.1.122. The 10.x.y.z subnet can have up to 224 devices, i.e. all IP addresses that start
with 10 are in the same subnet. This means the netmask has to be set to 255.0.0.0. A
gatewayip is not needed.

setenv ipaddr 10.0.0.252
setenv serverip 10.0.1.122
setenv netmask 255.0.0.0

You can use ping to verify that your network access is working.

ping 10.0.1.122

Using FEC0 device
host 10.0.1.122 is alive

Example 2

The board with ipaddr 192.168.1.17 should download files from the server with serverip
192.168.2.2. The network is divided in small subnets, only devices with the same first three
numbers are in the same subnet. Which means netmask has to be set to 255.255.255.0.
The gateway in subnet 192.168.1.x has gatewayip 192.168.1.1. This is a configuration that
is often found in private homes or small companies.

setenv ipaddr 192.168.1.17
setenv serverip 192.168.2.2
setenv gatewayip 192.168.1.1
setenv netmask 255.255.255.0

Again you can use ping to verify that the configuration is working.

5.7.3 RNDIS

Some F&S boards do not provide an Ethernet port. And even if they provide a WLAN inter-
face, this can not be used in U-Boot, because WLAN drivers are not included in U-Boot be-
cause of their complexity. On these boards, e.g. the PicoCoreMX7ULP, you can use RNDIS
over USB as a replacement network device.

The Remote Network Driver Interface Specification (RNDIS) is a protocol introduced by
Microsoft, mostly used on top of USB. It provides a virtual Ethernet interface to a remote ter-
minal, usually a PC. This remote PC can then either serve data directly, or it can be used as
gateway to relay any requests into the regular LAN. The F&S board is the device side and
the PC is the host side of the USB communication (see Figure 28). RNDIS is implemented in
Windows, Linux, and FreeBSD operating systems, so all of them are suited as remote part-
ner in the RNDIS communication.

58 Linux on F&S Boards

Working With U-Boot

If RNDIS is set up, you can use the regular network commands of U-Boot, e.g ping, tftp,
nfs, etc. U-Boot will automatically establish the USB connection and executes the com-
mand. Then it shuts down the USB connection again. This shows that RNDIS has quite some
overhead in U-Boot, as the communication is started for each command again. Or in other
words, the USB device will only be visible on the host side for the short period while the com-
mand is running. After that, the device disappears again. This is not perfect, but sufficient for
the occasional software download during development.

The environment variables shown in Table 8 are necessary for the RNDIS communication.

Environment Variable Value

ethaddr 00:05:51:07:55:83

usbnet_devaddr 00:05:51:00:00:01

usbnet_hostaddr 00:05:51:00:00:02

ipaddr 192.168.137.2

gatewayip 192.168.137.1

serverip 10.0.0.122 (example)

Table 8: Necessary environment variables for RNDIS

The board and the PC will open their own subnet to communicate with each other. This
needs to be different to the subnet where the PC is included in the LAN. So if the LAN is us-
ing the 10.0.0.x subnet for example, you can not use this for the direct communication, too.
When Microsoft Windows is installed on the host PC side, Windows will use 192.168.137.1

Linux on F&S Boards 59

Figure 28: Network access via RNDIS

USB Connection (RNDIS)

PC (10.0.0.75)
F&S Board without

Ethernet
(192.168.137.2) Device

Host (192.168.137.1)

LAN

Server
(10.0.0.122)

Working With U-Boot

for the PC by default. This means variable ipaddr must be in the same IP range. So simply
choose 192.168.137.2.

This means PC and board are now both in subnet 192.168.137.x and can talk to each other.
But to be able to talk to the server 10.0.0.122 in the 10.0.0.x subnet of the LAN, it requires a
gateway setting. If the virtual RNDIS network adapter on the host PC is bridged to the real
hardware network adapter, then the PC can take the role of the gateway. So set variable
gatewayip to the IP address of the PC, which is 192.168.137.1.

The variables usbnet_devaddr and usbnet_hostaddr are hard-coded in U-Boot, but
you are able to overwrite them if needed. These are some unused MAC addresses from the
F&S MAC address range that can be used for the RNDIS communication. Variable ethaddr
is not actually used in the communication, because usbnet_devaddr is used in RNDIS
communications instead, but the regular network commands will complain if ethaddr is not
set. The address above is the default value that U-Boot uses in these cases.

If not configured already, you can set the values with these commands:

setenv usbnet_devaddr 00:05:51:00:00:01
setenv usbnet_hostaddr 00:05:51:00:00:02
setenv ethaddr 00:05:51:07:55:83
setenv ipaddr 192.168.137.2
setenv gatewayip 192.168.137.1

When everything is set up, connect the USB device cable and verify the connection. You can
use ping to verify that your network access is working.

ping 10.0.0.122

Using usb_ether device
host 10.0.0.122 is alive

5.8 Image Download

One of the main purposes of U-Boot is to install the images that build the operating system.
In case of the default F&S Linux, this is the Linux kernel image, the device tree image and
the root filesystem image. They are all installed to NAND flash. Custom configurations may
consist of more images and may want to install these images to different places. But no mat-
ter how many images are to be installed, each image basically needs two steps

1. Load the image to RAM

2. Save the image to the appropriate device, e.g. NAND flash

So first we will look at the loading part. There are quite a few possibilities how to download
an image.

● Network download with TFTP or NFS

● Low-level read from a USB device

● Low-level read from an SD card

● Low-level read from a UBI volume

60 Linux on F&S Boards

Working With U-Boot

● High-level read from a filesystem (FAT, EXT2, EXT4, UBIFS)

Let us look at these options in more detail. Later we will see how these images can be
saved.

5.8.1 Network Download With TFTP or NFS

For TFTP or NFS, the network has to be configured, i.e. environment variables ipaddr,
serverip, gatewayip, netmask and of course the MAC addresses in the ethaddr vari-
ables have to be set appropriately (see Chapter 5.7 on page 56).

We also assume that TFTP and/or NFS services are correctly set up and running on the
server. When you use the F&S Virtual Development Machine or follow the steps in the Ad-
vicesForLinux_eng.pdf documentation, then the setting is as follows

● Files to be downloaded with TFTP have to be stored in /tftpboot on the server.

● Files to be downloaded with NFS have to be stored in /rootfs on the server.

To download a file with TFTP use the tftpboot command (or tftp for short).

tftp <loadaddr> <serverip>:<file>

In this case, the file <file> will be downloaded from the server with <serverip> to RAM
address <loadaddr>. If <loadaddr> is omitted, the address is taken from variable
loadaddr. If <serverip> and the colon are omitted, the IP address is taken from variable
serverip. Even <file> can be omitted, then a generic filename is generated from the
variable ipaddr converted to 8 hex digits appended by extension .img. For example a
board with ipaddr set to 10.0.0.252 will use the file name 0A0000FC.img (10=0x0A,
0=0x00, 0=0x00, 252=0xFC).

A common case is to just give the file name to download. The following example will down-
load a file zImage from the server configured in the environment.

tftp zImage

Using FEC device
TFTP from server 10.0.0.168; our IP address is 10.0.0.252
Filename 'zImage'.
Load address: 0x11000000

Loading:
 ## 1466 KiB
 ## 2934 KiB
 ## 4402 KiB
 ##
 3.1 MiB/s
done

Bytes transferred = 5831584 (0x58fba0)

As you can see, while downloading the file, progress is indicated by hash marks and the
amount of already transmitted bytes from time to time. At the end a summary is given.

Actually U-Boot can do a DHCP request before starting a TFTP download. In this case use
command dhcp instead of tftp. It has the same syntax but updates variables ipaddr,

Linux on F&S Boards 61

Working With U-Boot

netmask and gatewayip according to the answers from the DHCP server before loading
the file via TFTP. Of course if you want to download several files, only the first command
needs to be dhcp, the other commands can again be tftp.

The following example will load a kernel image and a device tree and starts the Linux system
that is built by these two images. On F&S boards, variable bootfile is set to the name of
the kernel image and variable bootfdt to the name of the device tree image. Variables
loadaddr and fdtaddr are set to some meaningful RAM addresses for these images. As
you can see the resulting commands are completely architecture independent and can be
run on any F&S board.

dhcp $loadaddr $bootfile

BOOTP broadcast 1
BOOTP broadcast 2
*** Unhandled DHCP Option in OFFER/ACK: 43
*** Unhandled DHCP Option in OFFER/ACK: 43
DHCP client bound to address 10.0.0.84 (709 ms)

Using FEC device
TFTP from server 10.0.0.168; our IP address is 10.0.0.84
Filename 'zImage'.
Load address: 0x11000000
Loading:
 ## 1466 KiB
 ## 2934 KiB
 ## 4402 KiB
 ##

 3.3 MiB/s
done

Bytes transferred = 5830096 (0x58f5d0)

tftp $fdtaddr $bootfdt

Using FEC device
TFTP from server 10.0.0.168; our IP address is 10.0.0.84
Filename 'efusa9dl.dtb'.
Load address: 0x12000000
Loading:
 #
 1.3 MiB/s
done

Bytes transferred = 44854 (0xaf36)

bootm $loadaddr - $fdtaddr

Booting kernel from zImage at 11000000
Flattened Device Tree blob at 12000000
 Booting using the fdt blob at 0x12000000
 Loading Kernel Image ... OK
 Using Device Tree in place at 12000000, end 1200df35
 Setting run-time properties
Overwriting property gpmi-nand@00112000/fus,ecc_strength from device tree!
Overwriting property bdinfo/ecc_strength from device tree!
Keeping property bdinfo/board_name from device tree!

Starting kernel ...

62 Linux on F&S Boards

Working With U-Boot

The command to download a file with NFS is nfsboot (or nfs for short).

nfs <loadaddr> <serverip>:<path>

This will download the file given with the full path <path> from server with <serverip> to
RAM address <loadaddr>. Again if <loadaddr> is ommited, the address is taken from
variable loadaddr. If <serverip> and the colon are omitted, the IP address is taken from
variable serverip.

A common case is to just give the file name to download. The following example will down-
load a file zImage from the server configured in the environment that has exported directory
/rootfs.

nfs /rootfs/zImage

Load address: 0x11000000

Loading:
 ## 1024 KiB
 ## 2048 KiB
 ## 3072 KiB
 ## 4096 KiB
 ## 5120 KiB
 ##
done

Bytes transferred = 5264904 (0x505608)

As you can see, output is rather similar to the TFTP case.

5.8.2 Low-level Read From USB Device

A USB device (USB stick or USB hard disc drive) can be connected to a USB host port of the
board. But as U-Boot does not support interrupts, the USB port must be polled. So it can not
automatically detect a device that is plugged in, you have to start the USB subsystem manu-
ally. The USB subsystem is handled with the usb command.

usb start

starting USB...
USB0: Port not available as HOST.
USB1: USB EHCI 1.00
scanning bus 1 for devices... 3 USB Device(s) found
 scanning usb for storage devices... 1 Storage Device(s) found

This will scan all available USB host ports and check for mass storage devices. The output in
the example above shows that there are two USB ports USB0 and USB1, but USB0 is the
device port and is not available as host port. On USB1, there are three devices found and
one of them is a storage device.

To get more information about the connected devices, call:

usb tree

USB device tree:
 1 Hub (480 Mb/s, 0mA)
 | u-boot EHCI Host Controller

Linux on F&S Boards 63

Working With U-Boot

 |
 +-2 Hub (480 Mb/s, 2mA)
 |
 +-3 Mass Storage (480 Mb/s, 200mA)
 USB DISK 2.0 07B9020B22F42A4C

This shows the devices in a tree-like structure. We see the root hub as device 1, an addi-
tional hub as device 2 and the storage device as device 3.

To see some information of the devices in general, use the following command:

usb info

1: Hub, USB Revision 2.0
 - u-boot EHCI Host Controller
 - Class: Hub

...

To see more information of the storage devices only, use:

usb storage

Device 0:
 Interface: USB
 Vendor:
 Product: USB DISK 2.0
 Revision: PMAP
 Type: Removable Hard Disk
 Capacity: 3700.6 MB = 3.6 GB (7579008 x 512)

It is important to know the storage device ID, because you have to use this when loading
data from the device. Storage device IDs are counted from zero, so in most cases it will be
device 0. But of course on boards with more than one host port or when using an external
hub, you can connect more than one storage device. Then you need the correct ID to be able
to talk to each device independently.

A low-level read needs the address in RAM where to load the data to, the sector number on
the USB device where to start reading from and the sector count, i.e. how many sectors
should be read. Please note that all numbers are in hex, even if no 0x is prepended. The fol-
lowing command reads 0x5000 (=20480) sectors starting from sector 0x200 (=512) and
stores the data at the RAM address given by variable loadaddr.

usb read $loadaddr 0x200 0x5000

usb read: device 0 block # 512, count 20480 ... 20480 blocks read: OK

Please note that from this low-level view of the usb command, you can only see the whole
device as one big space with absolute sector numbers. If you have a partition table on the
device, you can not access data relative to a partition start, you always have to give absolute
numbers. But at least you can list the partitions with the following command:

usb part

Partition Map for USB device 0 -- Partition Type: DOS

64 Linux on F&S Boards

Working With U-Boot

Part Start Sector Num Sectors UUID Type
 2 92240 10640 7b0e0f1b-02 ef Boot

In this example, the Stick is equipped with a valid partition table that holds one partition. The
partition starts on sector 92240 and is 10640 sectors long. Unfortunately U-Boot uses
decimal numbers here, which is not very consistent.

Remark

If you replace a USB stick with a different one, you have to restart the USB subsystem with

usb reset

resetting USB...

This will automatically rescan the devices.

5.8.3 Low-Level Read From SD Card

SD cards, or MMC devices in general, are handled with the mmc command. So handling an
SD card and eMMC memory is completely the same. To see all available MMC ports, use the
command:

mmc list

FSL_SDHC: 0 (SD)
FSL_SDHC: 1
FSL_SDHC: 2

This shows that there are three MMC ports 0 to 2. The name FSL_SDHC is given by the
driver and does not matter. One device is the current device and all mmc commands will refer
to it. By default this is port 0.

Note

MMC devices in U-Boot may be numbered differently to Linux. U-Boot enumerates them
in the sequence of initialization, while Linux uses the hardware port number. Devices
called mmc 0, mmc 1 and mmc 2 in U-Boot can for example be named mmc 3, mmc 0
and mmc 1 in Linux. So be careful in cases where you need a Linux name, for example
when preparing the Linux command line in variable bootargs.

F&S initializes the ports in U-Boot in an order so that the first port is always a slot for re-
placeable media. Non-removable devices like eMMC are last in the list. The idea is that
the first MMC device is often used for updates by inserting a card with new software. Then
scripts are easier to implement if they can use port 0 directly without having to query the
right port number first. A non-removable device like eMMC is less probably used as up-
date media.

Because U-Boot has no support for interrupts, it can not automatically detect when you plug
in or replace an SD card. If the card is already inserted at boot time, it is automatically
scanned. The same is true if you switch to a different port. But if you insert or replace a card
at runtime, you have to discover it manually. This is done with the following command:

Linux on F&S Boards 65

Working With U-Boot

mmc rescan

To get information about the device, enter the following command:

mmc info

Device: FSL_SDHC
Manufacturer ID: 3e
OEM: 482d
Name: SMI
Bus Speed: 50000000
Mode : SD High Speed (50MHz)
Rd Block Len: 512
SD version 2.0
High Capacity: No
Capacity: 957 MiB
Bus Width: 4-bit
Erase Group Size: 512 Bytes

This shows a low capacity SD card with approximately 1 GB of space and high speed sup-
port.

To low-level read some data from an MMC device, you need the address in RAM where the
data should be stored, the starting sector and the number of sectors to read. Please note that
all values are hex, even if you do not prepend 0x. The following command will read 0x2000
(=8192) sectors starting at sector 0x100 (256) and stores the data at the RAM address given
by environment variable loadaddr.

mmc read $loadaddr 0x100 0x2000

MMC read: dev # 0, block # 256, count 8192 ... 8192 blocks read: OK

Please note that from this low-level view of the mmc command, you can only see the whole
device as one big space with absolute sector numbers. If you have a partition table on the
device, you can not access data relative to a partition start, you always have to give absolute
numbers. But at least you can list the partitions with the following command:

mmc part

Partition Map for MMC device 0 -- Partition Type: DOS

Part Start Sector Num Sectors UUID Type
 1 255 1959681 00000000-01 06

In this example, the card is equipped with a valid partition table that holds one partition. The
partition starts on sector 255 and is 1959681 sectors long. Unfortunately U-Boot uses
decimal numbers here, which is not very consistent.

If you want to use a different device, you first have to switch the current device to the new
port. The following command will switch to the device on port 2:

mmc dev 2

switch to partitions #0, OK
mmc2(part 0) is current device

66 Linux on F&S Boards

Working With U-Boot

In our example, the device on port 2 is an eMMC memory. As shown in Chapter 3.8.2, eMMC
memory has more features compared to regular SD cards. For example it can use up to eight
data lines (instead of four), can use double data rate, and the data region can be subdivided
into hardware partitions. Each hardware partition behaves like a separate device. That
means each hardware partition has its own size and the data in it begins at sector 0. You can
even install a regular partition table on each hardware partition, further subdividing it into
software partitions.

When we list the device information of this eMMC, we get the following result:

mmc info

Device: FSL_SDHC
Manufacturer ID: fe
OEM: 14e
Name: MMC04
Bus Speed: 52000000
Mode : MMC High Speed (52MHz)
Rd Block Len: 512
MMC version 4.4.1
High Capacity: Yes
Capacity: 3.6 GiB
Bus Width: 8-bit
Erase Group Size: 512 KiB
HC WP Group Size: 4 MiB
User Capacity: 3.6 GiB
Boot Capacity: 2 MiB ENH
RPMB Capacity: 128 KiB ENH

This info shows, that the device has 3.6 GiB of space in the User region, 2 MiB of space for
each Boot partition, and 128 KiB of space in the RPMB region. In addition, the Boot partitions
and the RPMB partition use Enhanced Mode (also called Pseudo-SLC mode). This makes
data in these partitions more reliable for the cost of less available space.

When selecting an eMMC device using the mmc dev command as seen before, this will
automatically select partition 0, which is the user region. However you can add the partition
ID as an additional argument to select a different hardware partition. For example to access
the Boot1 partition, you have to type

mmc dev 2 1

switch to partitions #1, OK
mmc2(part 1) is current device

Now reading data would use the Boot1 hardware partition.

Important

Adding GP partitions or activating Enhanced Mode (Pseudo-SLC) on eMMC can be done
with the mmc hwpartition command. But please note that this is a write once opera-
tion. So if these changes are completed, they can never be undone again and remain

Linux on F&S Boards 67

Working With U-Boot

forever. So please carefully consider if you really need this. If you do it wrongly, you can
unintentionally reduce the available size of the eMMC considerably.

If you just need some partitions, using a software partition table on the User area is often
the better and easier solution.

5.8.4 Low-level Read From UBI Volume

Reading data from a UBI volume is rather simple. You just need to tell which MTD partition
holds the UBI…

ubi part TargetFS

...and then you can read the data. For example to read volume rootfs, simply call

ubi read $loadaddr rootfs

Reading from volume rootfs ... OK, 210653184 bytes loaded to 0x11000000

If you just want to read a limited number of bytes, you can add the count as an additional ar-
gument.

ubi read $loadaddr rootfs 0x20000

Reading from volume rootfs ... OK, 131072 bytes loaded to 0x11000000

An example where reading a volume can be useful is a recovery scenario. Imagine your
main filesystem has severe damage and does not start any more. But you have a backup of
your original root filesystem in a separate volume. Then you simply need to read this backup
volume now and use it to replace the contents of the volume with the damaged root filesys-
tem.

5.8.5 High-Level Read From Filesystem

The commands usb, mmc or ubi only provide a low-level view on the devices, i.e. on a sec-
tor-by-sector basis. But usually we want to read images that are stored as files in the filesys-
tem on these devices. This is possible by using the filesystem commands. These commands
allow listing the directory contents and loading a file. U-Boot supports FAT, EXT2, EXT4 and
UBIFS filesystems.

Historically there were separate commands for each filesystem, i.e. fatls and fatload for
FAT, ext2ls and ext2load for EXT2, ext4ls and ext4load for EXT4 and ubifsls and
ubifsload for UBIFS. These commands still exist, but now there is a common interface
that can be used for any filesystem. These commands are simply called ls and load. You
only have to give the device type and the device ID, supplemented by the partition number if
necessary. The remaining syntax is the same, no matter what filesystem is actually present
on the device.

Before being able to use these commands, the device must be available. Which means you
need to call usb start for USB devices, mmc rescan for MMC devices and ubi part for
UBI. But UBI needs an additional step to actually have access to the UBIFS filesystem.

 ubifsmount ubi0:rootfs

68 Linux on F&S Boards

Working With U-Boot

The syntax is taken from Linux, where there can be several different UBI devices. However in
U.Boot, only one UBI can be active at a time, so the prefix is always ubi0:, followed by the
volume name.

The following examples show the usage of ls and load.

List the files on the first USB storage device:

ls usb 0

/:
 <DIR> System Volume Information/
 36910 efusa7ul.dtb
 36449 efusa7ull.dtb
 890 install.scr
 65536 nbotmx6u.bin
 34219 picocom1.2.dtb
 35333 picocoremx6ull.dtb
 72884224 rootfs-fsimx6ul.ubifs
 524288 ubotmx6u.nb0
 5586048 zImage-fsimx6ul

Load the file zImage-fsimx6ul to the RAM address given by variable loadaddr:

load usb 0 $loadaddr zImage-fsimx6ul

Loading /zImage-fsimx6ul ... done!
5586048 bytes read in 599 ms (8.9 MiB/s)

List the files on the device on MMC port 0:

ls mmc 0

/:
 <VOLUME> SD Card
 262144 uboot.nb0
 47 noaction.txt
 103436638 EW2011-1080p50-crf10.avi

Load the file uboot.nb0 to the RAM address given by variable loadaddr.

load mmc 0 $loadaddr uboot.nb0

Loading /uboot.nb0 ... done!
262144 bytes read in 35 ms (7.1 MiB/s)

List the files in the currently mounted UBIFS

ls ubi 0

<DIR> 5224 Tue Jul 09 11:02:21 2019 bin
<DIR> 608 Sun Jul 07 20:09:08 2019 dev
<DIR> 2528 Tue Jul 09 11:02:56 2019 etc
<DIR> 3592 Tue Jul 09 11:02:49 2019 lib
<DIR> 160 Sun Jul 07 20:09:08 2019 mnt
<DIR> 160 Sun Jul 07 20:09:08 2019 opt
…

Linux on F&S Boards 69

Working With U-Boot

<DIR> 544 Tue Jul 09 11:02:49 2019 usr
<DIR> 160 Sun Jul 07 20:09:08 2019 proc
<DIR> 6456 Tue Jul 09 11:02:49 2019 sbin
<DIR> 160 Sun Jul 07 20:09:08 2019 root
<LNK> 11 Tue Jul 09 10:19:31 2019 linuxrc
<LNK> 3 Tue Jul 09 09:58:03 2019 lib32
<DIR> 160 Sun Jul 07 20:09:08 2019 media

Load the file bin/busybox

load ubi 0 $loadaddr bin/busybox

773212 bytes read in 115 ms (6.4 MiB/s)

If the device has a software partition table on it, you can add the partition number to the
device ID, separated by a colon. Partitions are counted from one, so the first partition on
device 0 is 0:1.

For example to list the files on partition 2 of the second USB storage device (ID 1) use this
command::

ls usb 1:2

You can also use virtual partition 0. This is a shortcut to the first partition, if the device con-
tains a partition table, or to the whole device otherwise. In fact when using the device ID
without a partition number, this is the same as referring to partition 0. So mmc 0 is the same
as mmc 0:0. In most cases, the device ID alone is sufficient.

If an image is too large to fit into RAM in one go, you can also load only parts of a file. Just
add the number of bytes to load as an additional argument. And if loading should not start at
the beginning of the file, also add a byte offset.

To load 0x2000 (=8192) bytes from the beginning of the file:

load mmc 0 $loadaddr uboot.nb0 0x2000

Loading /uboot.nb0 ... done!
8192 bytes read in 10 ms (799.8 KiB/s)Loading /uboot.nb0 ... done!

To load 0x1000 (=4096) bytes from offset 0x8000 of the file:

load mmc 0 $loadaddr uboot.nb0 0x1000 0x8000

Loading /uboot.nb0 ... done!
4096 bytes read in 14 ms (285.2 KiB/s)

5.9 Image Storage

In the previous section we have seen different ways how images can be downloaded to
RAM. Now we will see how images can be saved from RAM to some non-volatile memory.
These are the possible options:

● Save to a NAND flash MTD partition

● Save to a UBI volume

70 Linux on F&S Boards

Working With U-Boot

● Save to an SD Card or eMMC

One of the important things when saving data is that we need to know how much data we
need to save. U-Boot helps us with this. Most download commands will set the environment
variable filesize to the number of bytes that were transferred. So we can use this variable
to refer to the size of the currently downloaded file.

Note

Writing to a filesystem (FAT, EXT2, EXT4, UBIFS) is not possible in U-Boot. This is a de-
liberate decision. U-Boot should be used to bring images to the board, not to bring data
away from the board. This helps to prevent unauthorized copies of already installed soft-
ware.

5.9.1 Save to NAND Flash MTD Partition

NAND flash can only write new data to areas that do not contain any old data. So if we want
to replace existing data, we have to erase this old data first.

The easiest way is to have an own MTD partition for each image that needs to be stored.
Then you only need the partition name and the size of the data to write. If you want to store
more than one image in a partition, you have to keep track of all the addresses or offsets
yourself.

We assume that a kernel image was loaded to RAM at the address given by variable
loadaddr. The following commands will erase the Kernel partition and stores the image
there.

nand erase.part Kernel

NAND erase.part: device 0 offset 0x240000, size 0x800000
Erasing at 0xa20000 -- 100% complete.
OK

nand write $loadaddr Kernel

NAND write: device 0 offset 0x240000, size 0x58fb88
 5831560 bytes written: OK

The first command erases the MTD partition Kernel and the second command stores the
image there. We only store the real size of the image given by variable filesize, not the full
area of the Kernel partition. This is slightly faster.

Note

It is important that the partition is slightly larger than the image to be saved there. NAND
flash can always have bad blocks. These blocks are skipped when writing, which means if
an image would fit exactly into the partition, it will no longer fit if there are any bad blocks.

This is why F&S uses partitions that are larger than actually required by the appropriate
images, to be prepared for potential bad blocks. For example the UBoot partition is

Linux on F&S Boards 71

Working With U-Boot

768 KiB when the U-Boot image is only 512 KiB. This allows for up to two bad blocks in
this region, if a block has 128 KiB.

5.9.2 Save to UBI Volume

Before being able to write to an UBI volume, we have to tell U-Boot where the UBI volume is
located.

ubi part TargetFS

Then we can save the image. We assume a root filesystem image was loaded to the address
given by variable loadaddr and should be saved to the rootfs volume. The size in vari-
able filesize was set by the download command before.

ubi write $loadaddr rootfs $filesize

Writing to volume rootfs ... OK, 91930624 bytes stored

As you can see it is not necessary to erase the volume first. UBI will automatically erase the
blocks that it needs.

5.9.3 Save to SD Card or eMMC

Writing data to the SD card or eMMC memory is rather similar to reading data from it. First
you have to make sure that the correct MMC port is selected with mmc dev and the device is
correctly detected with mmc rescan. Then you can write the data.

We assume that a partition image with 512 MiB (=0x00100000 sectors) is available in RAM
and should be written at sector 0 to the MMC device. Please note that the variable file-
size is of no help here, because we have to give the size as sector count, not as byte count.

mmc write $loadaddr 0 0x00100000

MMC write: dev # 2, block # 0, count 1048576 ... 1048576 blocks written: OK

Again we do not need to erase the target before writing the data. This is automatically done
by the controller inside of the device.

Filesystem images for SD cards or eMMC memory are usually rather large and often do not
fit into RAM as a whole. In this case you have to split the image in smaller parts, read each
part separately and use an own mmc write command for each part.

5.9.4 High-Level Write To Filesystem

On some boards, for example the PicoCoreMX7ULP, U-Boot, the Linux kernel and the device
tree are stored in a FAT software partition on eMMC. These boards typically support high-
level writing to FAT filesystems. This works similar to reading. For example if the FAT filesys-
tem is located on the first partition on the boot device in mmcdev, then the following com-
mand will write data from RAM at the address in loadaddr to the file zImage.

write mmc $mmcdev:1 $loadaddr zImage $filesize

72 Linux on F&S Boards

Working With U-Boot

Again there is the old command fatwrite instead of the filesystem independent write
command if you prefer this.

5.10 Exporting eMMC as USB Mass Storage Device

But there is also a completely different option to get data from and to such a FAT partition:
USB Mass Storage Device. If you have a USB cable connected between the USB Device
port of the board and a USB Host port of your PC, then you can use the ums command to ex-
port the whole eMMC as Mass Storage Device.

ums 0 mmc $mmcdev

UMS: LUN 0, dev 1, hwpart 0, sector 0x0, count 0x748000
-

From now on the board behaves like a USB stick and the PC will open a window with the
content. Now you can use drag and drop to copy files between your PC and the board.

For example if you want to store a new Linux kernel version, simply replace the kernel im-
age, e.g. zImage, with the new version.

When you are done, simply use the appropriate eject sequence for USB media on your PC to
finish any pending writes and then stop the ums command in U-Boot with Ctrl-C. Then you
you are back on the command line to enter new commands.

5.11 Booting the Linux System

Starting the Linux system is rather simple. Just start the board and after a few seconds, U-
Boot will automatically boot the kernel. Or if you are already in the U-Boot command line in-
terface, then simply use command

boot

This actually executes the commands that are stored in variable bootcmd. So if you want to
change the behaviour of the boot sequence, then just modify this variable. But in the end,
there must be a command that actually transfers the execution to the Linux kernel. This is the
bootm command. In the past without device trees, just the address of the kernel had to be
given. This means the kernel image had to be loaded to RAM and then this RAM address
had to be given as argument to bootm.

Nowadays, however, there is also the device tree image, in U-Boot often called Flat Device
Tree, or FDT for short. This means two such images need to be loaded to RAM and the RAM
address of the device tree has to be given as argument to bootm, too. Actually, the device
tree address is the third argument to bootm, not the second. Because the second argument
can be used for the initial ramdisk.

An initial ramdisik can be used in complicated boot sequences when access to the real root
filesystem requires loading some drivers. Then you would create a rather small preliminary
root filesystem image that only contains all necessary command line tools, scripts, drivers
and the init program. This root filesystem would be loaded completely to RAM before the
kernel is started, hence the name initial ramdisk, or initrd for short. Then Linux would use this

Linux on F&S Boards 73

Working With U-Boot

initrd and the programs in it to mount the final root filesystem, switch to this final root filesys-
tem and finally drop the initrd.

However the boot sequence on F&S boards is simple enough that we can directly mount the
final root filesystem, an initrd image is not needed. This means we have to load the kernel
image and the device tree to RAM, usually from MTD partitions Kernel and FDT, and then
we can call bootm.

nand read $loadaddr Kernel
nand read $fdtaddr FDT
bootm $loadaddr - $fdtaddr

As you can see we use variables loadaddr and fdtaddr to provide meaningful addresses
for the images. And note the - (dash) character as second argument to tell bootm that we do
not use an initrd image.

Note

Normally when using a kernel image of type zImage, you would have to use a different
boot command called bootz with the same syntax. However F&S has modified the
bootm command so that it also works with zImages. This means there is no difference to
previous releases where we used the uImage type for the kernel and where bootm was
mandatory.

74 Linux on F&S Boards

Special F&S U-Boot Features

6 Special F&S U-Boot Features
F&S has an enhanced U-Boot to work more reliably and to be used more intuitively. The fol-
lowing list shows a short summary.

● The often used expression $loadaddr can be abbreviated as a simple dot.

● A new FAT driver uses less RAM and allows wildcards in FAT filenames.

● An improved NAND driver speeds up NAND access and makes it more reliable by
adding block refresh.

● The Install/Update/Recover mechanism provides automatic software installation in
the production, automatic updates in the field and automatic recovery to the delivery
status or the previous version in case of damaged system files.

● Linux Boot Strategies provide different ways to start the system. For example during
development when images change on a regular basis, it may be useful to download
all images over the network on the fly. However in the final stand-alone system, the
images need to be available locally.

● Different NAND Layout Strategies provide common scenarios to store kernel and
device tree images.

● Allow percent values and hex numbers when setting eMMC to Enhanced Mode.

● Special command fsimage to handle F&S images

We will show these features in more detail in the upcoming sections.

6.1 Simplified $loadaddr

The variable $loadaddr is needed so many times in so many U-Boot commands, that F&S
has made an extension to U-Boot to make its usage easier. Instead of having to type
$loadaddr all the time, you can simply type a single dot. So for example instead of

nand read $loadaddr Kernel

you can simply type

nand read . Kernel

Please note that this is no standard behaviour of U-Boot. When using U-Boot versions of
other manufacturers, or even in old U-Boot versions of F&S, the dot may be interpreted as
the value zero, which is not what you want.

In our examples throughout this document we will still use the long form $loadaddr for two
reasons. A single dot may easily be overlooked and considered “dirt” on the paper and
skipped at the input. And using the long form makes the intention of the command more clear
that a variable and some memory address is accessed. So we do not use the short form for
didactic reasons.

Linux on F&S Boards 75

Special F&S U-Boot Features

6.2 Allow Wildcards in FAT Filenames

USB sticks or MMC devices (SD cards) are typically formatted with the FAT filesystem. The
original U-Boot has quite some problems when handling long filenames (VFAT entries). For
example if two filenames start with the same sequence of more than eight characters, U-Boot
may load the wrong file because it will not detect the difference.

Because of this insufficiency, F&S has completely rewritten the FAT access code. It con-
sumes far less memory for buffers in RAM (one FAT sector = 512 bytes compared to two
clusters of up to 32 KB each in mainline U-Boot).

In addition, it can also work with wildcards (see Table 9).

Wildcard Description Example

* Matches any number of arbitrary
characters, even zero

ub*txt will match ub123txt, uboot.txt
and even ubtxt, but not uboot.nb0

? Matches exactly one arbitrary
character

ub??txt will match ub12txt and
ubi.txt, but not uboot.txt

Table 9: Wildcards in FAT names

For example if you look at the content of an SD card with a kernel image, root file system and
a U-Boot image stored there it will show the following list:

armStoneA9 # mmc rescan
armStoneA9 # ls mmc 0
/:
 524288 uboot-fsimx6.nb0
 4497696 zImage-fsimx6
 57266176 rootfs-fsimx6.ubifs

So for example to load the rootfs-fsimx6.ubifs file from this SD card, simply type

load mmc 0 $loadaddr root*

Or load the file that ends in nb0 with

load mmc 0 $loadaddr *nb0

If the wildcard expansion results in more than one filename, this will only work for the ls
command. But when trying to load a file, this will result in an error.

armStoneA9 # ls mmc 0 *fsimx6*

/:
 4497696 zImage-fsimx6
 57266176 rootfs-fsimx6.ubifs

armStoneA9 # load mmc 0 $loadaddr *fsimx6*

/: Ambiguous matches for "*fsimx6*"

76 Linux on F&S Boards

Special F&S U-Boot Features

Note

The concept of wildcard characters in filenames would also be handy with other filesys-
tems like EXT2/EXT4 or UBIFS, and the code is even written in a way that other filesys-
tems could take advantage of it. Unfortunately at the moment only the F&S FAT driver ac-
tually uses the wildcard code.

6.3 Improved NAND Driver

Compared to the regular Linux releases by NXP, F&S has considerably improved the NAND
access in NBoot, U-Boot and Linux. It uses ECC with high error correction capabilities (at
least 16 bit errors can be corrected in a 2K page), is much faster and it also has block refresh
for regular MTD partitions now. This means that an increasing number of bitflips caused by
merely reading the data (read-disturbances) is detected and corrected by automatically re-
writing the block.

Much care is taken that no data is ever lost during this refresh procedure, even if there is a
power failure while the refresh is in progress. The data of the original block is first copied to a
reserved backup block in the Refresh partition, then the original block is erased and finally

Linux on F&S Boards 77

Figure 29: Block Refresh with intermediate safety copy

NBoot UBoot Kernel FDT

TargetFS
User
Def

Re
fresh

UBoot
Env rootfs

1. Copy to Refresh partition

NBoot UBoot Kernel FDT

TargetFS
User
Def

 Re
 fresh

UBoot
Env rootfs

2. Erase original block

NBoot UBoot Kernel FDT

TargetFS
User
Def

 Re
 fresh

UBoot
Env rootfs

3. Copy back to original block

NBoot UBoot Kernel FDT

TargetFS
User
Def

Re
fresh

UBoot
Env rootfs

4. Erase copy in Refresh partition

Block with excessive bitflips

Special F&S U-Boot Features

the data is copied back to the original block and the backup copy is erased (see Figure 29).
So data is not simply held in RAM, at any time there is at least one valid copy of the data in
non-volatile memory, either in the original block or in the backup block. If the refresh process
is interrupted, the next time it will either be continued or repeated from start, depending on
the stage where the interruption happened. If the block data was only buffered in RAM, it
would be lost in this case.

Because of this Block Refresh, data integrity of regular MTD partitions is better than ever be-
fore, and this is even true for the bootloaders NBoot and U-Boot. They also profit from this
block refresh.

This means F&S has also increased the data safety for all data that is not handled by UBI.
And because of this we still keep the Linux kernel image in an MTD partition in our standard
configuration. We believe it is similar safe as with UBI, but this method does not have the
penalty of a slower boot time. In our view this is the best compromise between speed and
data safety.

6.4 The Install/Update/Recover Mechanism

Installing software on an empty board and updating software to a new version are common
tasks when working with an embedded system. F&S has added an install, update and re-
cover mechanism to U-Boot to automate these tasks as far as possible.

How does it work? When U-Boot starts, it follows these steps.

78 Linux on F&S Boards

Figure 30: Generic Update/Install/Recover flow

Start

Recover
?

Check for
update.scr

Check for
recover.scr

Found?

Load Linux images

Success?

Check for install.scr

Found?Load script,
 execute commands

End Jump to Linux-
Kernel

YesNo

Yes

No

No

Yes

No

Yes

Special F&S U-Boot Features

1. It checks at several locations for the script file update.scr. If the file is found, it is
executed. The file is typically used to do a system update. Alternatively it can look for
a file recover.scr to do a system recovery.

2. If no such script is found, U-Boot tries to boot with variable bootcmd. This is the com-
mon case and constitutes the regular start of the Linux system.

3. If booting fails, U-Boot looks at several locations for the script file install.scr. If it
is found, it is executed. The file is typically used to install Linux on an empty system.

The general flow of this mechanism is shown in Figure 30. It looks more complicated than it
actually is. We will look at it step by step.

6.4.1 Regular Boot Process

First we will show what a regular boot process will look like. U-Boot looks for an update
script, but it will not find any. So it will simply load the Linux kernel and jumps to it. That’s all
(see Figure 31).

6.4.2 Install Process

Apart from Starterkits that include a full set of software, F&S typically ships its boards with
only the bootloaders NBoot and U-Boot installed. This means you need to install the final
software yourself as part of your own production process. In fact, this is rather easy by using
the so-called Install Process. You just have to make sure that an install script, typically called
install.scr, is available at some predefined location, for example on a USB stick. We will

Linux on F&S Boards 79

Figure 31: Regular Boot Process

Start

Recover
?

Check for
update.scr

Check for
recover.scr

Found?

Load Linux images

Success?

Check for install.scr

Found?Load script,
 execute commands

End Jump to Linux-
Kernel

YesNo

Yes

No

No

Yes

No

Yes

Special F&S U-Boot Features

see later what different locations are possible. If the file is found, it is loaded and the U-Boot
commands inside are executed (see Figure 32).

The install script itself is responsible for doing all the steps to perform the installation of the
system software (kernel, device tree, root filesystem, etc.). U-Boot has no deeper knowledge
of where to get any files or images and where to store them. It also does not know what to do
if anything fails. All this stuff must be part of the script. This keeps the installation mechanism
itself rather simple.

After the installation is done, it is a good idea to restart the system with command reset as
the last command of the script. The installation process may have updated U-Boot itself, in-
cluding the U-Boot environment. If the board is completely rebooted this way, it makes sure
that everything, including the Linux system, can actually be started successfully from now on.
Because of the now valid system software, U-Boot will perform a regular boot process into
Linux. There you can perform final high-level installation or configuration steps that may not
be possible in U-Boot alone.

If there is no install script, or if the install script ends without starting the system in one way or
the other, U-Boot simply stops at the command prompt and waits for commands.

6.4.3 Update Process

As we have seen, the Installation Process is only started if there is no valid Linux system. But
if a system in the field should be updated, there is already a valid Linux system on the board.
This is why U-Boot additionally looks for an update script before the Linux system is started.
The script, which is typically called update.scr, is loaded to RAM and executed if found.

80 Linux on F&S Boards

Figure 32: Install Process

Start

Recover
?

Check for
update.scr

Check for
recover.scr

Found?

Load Linux images

Success?

Check for install.scr

Found?Load script,
 execute commands

End Jump to Linux-
Kernel

YesNo

Yes

No

No

Yes

No

Yes

Special F&S U-Boot Features

This is then called an Update Process (see Figure 33). Again the script itself is responsible
for doing all the steps to perform the update and handle failures.

The difference between Install Process and Update Process is simply that U-Boot checks for
the update script before the system start and for the install script only if the system start fails.
Loading and executing the script itself is completely the same.

Remark

After the update process is done, the update script should either start the Linux system by
calling command boot, or instruct the user to remove the update media and restart the
system manually. It is not a good idea to simply execute the reset command to reboot
the system. Because different to the Install Process, here the update script will be found
again at the next start and the update process will repeat over and over.

6.4.4 Recover Process

There is yet a third update variant that we call Recover Process. This type assumes that you
have installed some kind of fall-back system software. This is nothing that is there by itself,
you have to actively prepare your devices before shipping so that this fall-back system is
available. For example you can keep the originally shipped software version as a copy on the
board. Then if something goes wrong, you can recover from the error by going back to the
original software. The recover process then must copy the backup version to the working ver-
sion (see Figure 34).

Linux on F&S Boards 81

Figure 33: Update process

Start

Recover
?

Check for
update.scr

Check for
recover.scr

Found?

Load Linux images

Success?

Check for install.scr

Found?Load script,
 execute commands

End Jump to Linux-
Kernel

YesNo

Yes

No

No

Yes

No

Yes

Special F&S U-Boot Features

Or you can use a kind of ping-pong activation. You always have an active version and an in-
active version. The active version is the system that is running. An update however will install
to the inactive version. If anything fails before the update is complete, the active version is
still valid and can still be started. Only if the update process can be fully completed without
error, then you switch the roles of the active and inactive versions. Then you start the newly
installed version and the previous version gets inactive.

If, despite everything, something still goes wrong, then you can recover by simply switching
back the roles and thus re-activating the previous version (see Figure 35).

Now you simply have to tell U-Boot to start the Recover Process. This may be implemented
by a recessed button that can only be pressed with the help of a pen or a bent-open paper-
clip, or by a key switch that can only be accessed by a privileged service person, or after
opening the casing.

82 Linux on F&S Boards

Figure 34: Recover by copying backup version to active version

NBoot
FDT
(ori-

ginal)

Kernel
(original)

U-Boot

TargetFS

Root filesystem
(original)

Kernel
(new)

FDT
(new)

Copy original to
 active version

Root filesystem
(new)

Malfunction

NBoot
FDT
(ori-

ginal)

Kernel
(original)

U-Boot

TargetFS

Root filesystem
(original)

Kernel
(original)

FDT
(ori-

ginal)
Root filesystem

(original)

After recovery

Figure 35: Recover by re-activating the previous version

NBoot
FDT
(pre-
vious)

Kernel
(pre-

vious)
U-Boot

TargetFS

Root filesystem
(previous)

Kernel
(next)

FDT
(next)

Switch back to
previous version

Root filesystem
(next)

Malfunction

NBoot
FDT
(pre-
vious)

Kernel
(pre-

vious)
U-Boot

TargetFS

Root filesystem
(previous)

Kernel
(next)

FDT
(next) Root filesystem

(next)

After recovery

Special F&S U-Boot Features

All these implementations have in common that in the end only a GPIO input pin changes
state. So when U-Boot starts, it can also check for this GPIO pin. If the pin is in regular state,
the normal check for update is done as shown above. But if the pin is in recover state, U-
Boot looks for a recover script, typically called recover.scr, and executes it if found (see
Figure 36). Again the recover script is responsible to do all steps required to recover the sys-
tem to a working state.

6.4.5 Configuring the Install/Update/Recover Mechanism

In general, the Install/Update/Recover mechanism can be configured by setting several U-
Boot environment variables. An overview is in Table 10.

Variable Description Action if not set

recovergpio GPIO pin and signal level on this pin to use
for recover detection

No recover check is done

installscript Name of the install script Use install.scr

updatescript Name of the update script Use update.scr

recoverscript Name of the recover script Use recover.scr

installaddr RAM address to load install script to Use $loadaddr

updateaddr RAM address to load update script to Use $loadaddr

Linux on F&S Boards 83

Figure 36: Recover process

Start

Recover
?

Check for
update.scr

Check for
recover.scr

Found?

Load Linux images

Success?

Check for install.scr

Found?Load script,
 execute commands

End Jump to Linux-
Kernel

YesNo

Yes

No

No

Yes

No

Yes

Special F&S U-Boot Features

Variable Description Action if not set

recoveraddr RAM address to load recover script to Use $loadaddr

installcheck Locations where to look for install script
(Default setting: ram@<addr>,mmc,usb)

No install is done

updatecheck Locations where to look for update script
(Default setting: mmc,usb)

No update is done

recovercheck Locations where to look for recover script
(Default setting: ram@<addr>,mmc,usb)

No recover is done

Table 10: Variables to configure Install/Update/Recover Mechanism

To define which GPIO pin is to be checked and whether to trigger the Recover Process in
high or low level state, you have to set the environment variable recovergpio. Just give
the GPIO number, followed by an optional dash – or underscore _, followed by high or low.
Only the first letter of the last word is actually checked. H or h is high, everything else (includ-
ing nothing at all) is low.

Examples

Start Recover Process if GPIO #123 is high level

setenv recovergpio 123_high

Start Recover Process if GPIO #65 is low level

setenv recovergpio 65-low

Start Recover Process if GPIO #13 is low level

setenv recovergpio 13

Start Recover Process if GPIO #31 (0x1f) is high level

setenv recovergpio 0x1fh

Remark

Some customer specific boards already handle the recover recognition in NBoot. Then U-
Boot gets this information directly from NBoot and it is not necessary to set this variable.

If you want a different name for any of the scripts, just set the corresponding environment
variable installscript, updatescript or recoverscript accordingly. For example if
the update script should be named my_update.uboot instead of update.scr, then simply
call:

setenv updatescript my_update.uboot

By default, the scripts are loaded to the default address given by variable loadaddr. How-
ever if this makes any problems, you can set a different load address by setting the corres-

84 Linux on F&S Boards

Special F&S U-Boot Features

ponding variable installaddr, updateaddr or recoveraddr. For example to load the
recover script to address 0x85000000, execute the following command:

setenv recoveraddr 85000000

Finally the locations, where U-Boot should look for the scripts can be given in the variables
installcheck, updatecheck and recovercheck. If such a variable is empty, then no
check is done, effectively disabling this kind of update. By default, the install and recover
scripts look at an architecture specific RAM address, at the first MMC port and at the first
USB storage device. The update script only looks at the first MMC port and the first USB
storage device.

Attention

When boards are shipped by F&S, install, update and recover are enabled. This is inten-
ded so that you can use these mechanisms to automatically install your own system soft-
ware in your production. But do not forget to change the default settings afterwards to suit
your own update policy. Especially if you do not want to enable any automatic update for
your product in the field, then you have to clear (unset) the variables installcheck, up-
datecheck and recovercheck!

Table 11 shows all possible locations for script files and how the necessary parameters are
given in the check variable. You can also give a list of locations, separated by commas, then
U-Boot will look at all these locations one after the other. The first script that is found is
loaded and executed.

Location Description

mmc[<dev_num>[:<part_num>]] An SD card or eMMC on any MMC port. If no device
number (port) is given, use port 0, i.e. the first port.
If no partition number is given, use 0, which either
refers to the first partition of a device or the whole
device if it does not contain a software partition
table. Regular partition numbers are counted from 1.

usb[<dev_num>[:<part_num>]] Any USB storage device. If no device number is
given, use 0, i.e. the first storage device. If no parti-
tion number is given, use 0, which either refers to
the first partition of a device or the whole device if it
does not contain a software partition table. Regular
partition numbers are counted from 1.

nand[<dev_num>[:<part_num>]]
[+<offset>]

Any MTD partition on NAND given by device num-
ber and partition number plus an optional offset.

<part_name>[+<offset>] Any MTD partition on NAND given by the partition
name plus an optional offset

nand[<dev_num>[:<part_num>]
.ubi(<vol_name>)

Any UBIFS in the volume with the given name in the
UBI on top of the MTD partition given by device and

Linux on F&S Boards 85

Special F&S U-Boot Features

partition number

<part_name>.ubi(<vol_name>) Any UBIFS in the volume with the given name in the
UBI on top of the MTD partition given by the partition
name

ram[@<addr>] Any RAM address. If no address is given, use the
value of variable loadaddr.

tftp Any TFTP server configured manually by the U-Boot
environment variables

dhcp Any TFTP server configured by a DHCP request

nfs Any NFS server configured manually by the U-Boot
environment variables

Table 11: Syntax for install/update/recover script locations

Examples

For update script, look at the first USB storage device only

setenv updatecheck usb

For install script, look at the second partition on the device on MMC port 2 and on the third
partition on the second USB storage device (devices are counted from 0, so the second
device has number 1). You can use blanks between the device name and the number and
also after the comma, if you like.

setenv installcheck mmc2:2, usb1:3

For recover script, look at the UBI volume backup (on top of the MTD partition TargetFS),
and if not found, also try a TFTP server that is configured in the U-Boot variables.

setenv recover TargetFS.ubi(backup),tftp

Note

It sounds tempting to directly specify a network server for updates, where the update
script and the images are uploaded when a new version is available. However the update
check will be done on every boot cycle of the board. If the board is not online, for example
if the network cable is not plugged in, or if the server does not respond, then U-Boot will
wait for several seconds before continuing the boot process. This will delay every regular
boot considerably. This is not what you want.

Either do the download in Linux and store the files somewhere locally where U-Boot will
find the update script at the next boot, or only enable the update check by changing the
updatecheck variable when you are sure that there is actually a new version available.

86 Linux on F&S Boards

Special F&S U-Boot Features

6.4.6 The update Command

Sometimes you also want to trigger the Install, Update or Recover Process manually, for ex-
ample when you want to test your scripts. This can be done by using the update command.
If you just use update, it will obviously start an Update Process. If you append .install or
.recover, it will start an Install or Recover Process. You can give the location where to look
for the appropriate script as first argument, the name of the script as second argument and
the load address as third argument. This will override the values of the environment vari-
ables.

Please be careful when entering the location. If you add blanks like in mmc 0, then you have
to enclose the whole argument in double quotes, or otherwise the 0 would be interpreted as
the next argument, which is the script name. This is why you can omit all blanks in the loca-
tion string so that you also do not need any double quotes.

Examples

Do an Update Process with standard settings.

update

Start a Recover Process from MMC port 1, and optionally via TFTP. Look for the script file
test.scr. Load it to address 0x83000000.

update.recover mmc1,tftp test.scr 83000000

Show the help for command update with a detailed description of the configuration options.

help update

6.4.7 Creating an Appropriate U-Boot Script Image

To prepare a script to be used with any of the above methods, you need to create a text file
with all the U-Boot commands that should be executed. But unfortunately this text file can not
be executed by U-Boot directly, you first need to convert it to a U-Boot script image.

A simple update script for nand could look like this:

Load kernel image and store in partition Kernel
load ${updatedev} . zImage-${arch}
nand erase.part Kernel
nand write . Kernel ${filesize}

Load device tree blob and store in partition FDT
load ${updatedev} . ${platform}.dtb
nand erase.part FDT
nand write . FDT ${filesize}

Create UBI with volume rootfs on partition TargetFS
nand erase.part TargetFS
ubi part TargetFS
ubi create rootfs

Linux on F&S Boards 87

Special F&S U-Boot Features

Load root filesystem and store in UBI volume rootfs
load ${updatedev} . rootfs-${arch}.ubifs
ubi write . rootfs ${filesize}

Set default configuration: kernel and fdt from NAND, rootfs from ubifs
run .kernel_nand
run .fdt_nand
run .rootfs_ubifs

Remove update variable and save environment
setenv updatedev
saveenv

Done
echo "Installation complete"
echo
echo "Please set/verify ethernet address(es) now and call saveenv"

As you can see, we are using variables arch for the architecture and platform for the plat-
form name. These variables are automatically set by our U-Boot and allow us to use the
same install script for almost all our platforms.

In addition, during an update process, the variable updatedev is set to the location, where
the script itself was loaded from. So for example if the script was loaded from MMC port 0,
then updatedev will be set to mmc 0. So we need not know beforehand when writing the
script which kind of update device is actually used later. Unfortunately this is only possible for
MMC and USB sources. As you can see, we need to take care and delete this variable be-
fore saving the environment, or else the variable would always be set.

Note

Please make sure that you use Linux line endings with <LF> only, not Windows line end-
ings with <CR><LF>. Using the wrong line endings may cause each command to be ex-
ecuted twice, similar to the U-Boot command line where just pressing Return typically re-
peats the previous command.

Starting with release fsimx6-B2021.10 and fsimx8mn-Y2021.10, the install script is built with
Buildroot and Yocto.

Buildroot

For Buildroot, the script source is located at

 board/f+s/common/install.txt

A different source can be used by setting the INSTALL_TXT_PATH variable in the boards fi-
nalscript_* file to the new source location.

The output install.scr can be found at

 output/images/install.scr

88 Linux on F&S Boards

Special F&S U-Boot Features

Yocto

The source file install.txt can be found at

sources/meta-fus/recipes-config/images/files/install.txt

in the Yocto directory.

The output install.scr can be found at

tmp/deploy/images/fsimx7ulp/install.scr

in the Yocto-Build directory.

Older releases:

The text version install.txt of our standard F&S install.scr file can be found in the
sources directory of our releases. It has the following content.

The conversion of the text file to a U-Boot script image is done with the following command
on your development PC:

mkimage -A arm -O u-boot -T script C none -n "F&S install script" \
 -d install.txt install.scr

mkimage is a tool that is built when compiling U-Boot. So you will find it in the tools subdir-
ectory of U-Boot. We also have stored a copy in the toolchain directory of our releases.
The command adds a description, a CRC checksum and some other information to the file.
The file could also be compressed if necessary, but we do not do this because the script is
very short and compression does not make much sense. You can do this if you want to hide
the content. By default, the content can be easily extracted from the script image.

The result of the command is the file install.scr that can be used in U-Boot.

6.5 Linux Boot Strategies

When U-Boot boots the system, it automatically executes the commands stored in environ-
ment variable bootcmd and passes the contents of variable bootargs as command line to
the Linux kernel. By modifying the contents of these variables, the boot process can be
changed. For example by using a different boot command in bootcmd, the kernel can be
loaded from a different place. And by using a different bootargs content, the Linux system
can load the root filesystem from a different place or can do other things differently.

When working with an Embedded System, there are different situations that require different
boot behaviour. For example while developing the application software, the board is usually
connected permanently to the LAN and it may be convenient to load the ever changing root
filesystem via NFS and have write access to it. Later when development is over, the system
should be switched to a self contained environment where the root filesystem is loaded from
NAND flash and is read-only.

To cope with these different situations, F&S has developed different boot strategies. You can
easily switch between these strategies by running commands that are stored in environment
variables.

The following settings can be modified independently from each other.

Linux on F&S Boards 89

Special F&S U-Boot Features

● From where to load the kernel (nand, ubi, ubifs, tftp, nfs, mmc, usb).

● From where to load the device tree (none, nand, ubi, ubifs, tftp, nfs, mmc, usb).

● From where to load the root filesystem in Linux (ubifs, nfs, mmc, usb).

● How to mount the root filesystem in Linux (ro, rw).

● Where to show the console in Linux (none, serial, display).

● Where to start the login prompt in Linux (none, serial, display).

● How to start the network in Linux (off, manual, dhcp).

● The name of the init program (init, linuxrc)

To understand how this actually works, we have to take a look at the bootcmd variable. The
contents of this variable are executed when the system boots. On F&S boards it has the fol-
lowing content.

run set_bootargs; run kernel; run fdt

So it first runs the content of variable set_bootargs. As the name already suggests, this
will handle all settings of the bootargs variable which is used as kernel command line later
when the Linux system starts. Then it runs the contents of variable kernel which loads the
kernel image from different sources into RAM. And finally it runs the contents of variable fdt
which loads the device tree and executes the kernel image from RAM

So let's have a look at the set_bootargs variable, too

setenv bootargs ${console} ${login} ${mtdparts} ${network} ${rootfs}
 ${mode} ${init} ${extra}

Here the contents of the bootargs variable (= command line) is assembled by combining
several other variables. So basically it is possible to change the command line content by
modifying the content of one or more of these variables. And it is possible to change the ker-
nel source by modifying the kernel variable.

We have prepared a set of predefined environment variables that will allow setting each of
these parts to meaningful values. So there are several settings to change the console vari-
able, several settings to change the login variable, and so on. This results in quite a lot of
environment variables, which is why we have chosen to hide them so that they do not over-
load a common printenv listing. This means all these variable names start with a . (dot) and
you can only see them with

printenv -a

The following sections will show the predefined variables. Of course you can also set differ-
ent values or add more variables if the predefined settings do not suit your needs.

6.5.1 Kernel Settings

These settings listed in Table 12 modify the kernel variable and tell U-Boot where to load
the kernel image from. If a filename is required, it is taken from variable bootfile. Other
settings may also be taken from other variables, for example the network settings.

90 Linux on F&S Boards

Special F&S U-Boot Features

Kernel Description

.kernel_mmc Tell U-Boot to load kernel from MMC (SD card)

.kernel_usb Tell U-Boot to load kernel from USB drive

.kernel_nfs Tell U-Boot to load kernel via network with NFS protocol

.kernel_tftp Tell U-Boot to load kernel via network with TFTP protocol

.kernel_nand Tell U-Boot to load kernel from MTD partition Kernel

.kernel_ubi Tell U-Boot to load kernel from the UBI volume named kernel

.kernel_ubifs Tell U-Boot to load kernel from the root filesystem, subdirectory
/boot; the root filesystem is assumed to be UBIFS formated
and located in the UBI volume named rootfs.

Table 12: Variables to set kernel source

6.5.2 Device Tree Settings

The settings listed in Table 13 modify the fdt variable and tell U-Boot where to load the
device tree from and how to start the kernel. If a filename is required, it is taken from variable
bootfdt.

Variable Description

.fdt_none Tell U-Boot to load no device tree (for example if the device
tree is already appended to the kernel image)

.fdt_mmc Tell U-Boot to load device tree from MMC (SD card)

.fdt_usb Tell U-Boot to load device tree from USB drive

.fdt_nfs Tell U-Boot to load device tree via network with NFS protocol

.fdt_tftp Tell U-Boot to load device tree via network with TFTP protocol

.fdt_nand Tell U-Boot to load device tree from MTD partition FDT

.fdt_ubi Tell U-Boot to load device tree from the UBI volume fdt

.fdt_ubifs Tell U-Boot to load device tree from the root filesystem, subdir-
ectory /boot; the root filesystem is assumed to be UBIFS
formated and located in the UBI volume named rootfs.

Table 13: Variables to set device tree source

Linux on F&S Boards 91

Special F&S U-Boot Features

6.5.3 Rootfs Settings

The settings listed in Table 14 modify the rootfs variable as part of the bootargs variable
and tell the kernel from where to load the root filesystem.

Variable Description

.rootfs_mmc Tell kernel to load root filesystem from MMC (SD card)

.rootfs_usb Tell kernel to load root filesystem from a USB drive

.rootfs_nfs Tell kernel to load root filesystem via network (NFS)

.rootfs_ubifs Tell kernel to load root filesystem from a UBIFS filesystem loc-
ated in a UBI volume

Table 14: Variables to set rootfs source

6.5.4 Mode Settings

The settings listed in Table 15 modify the mode variable as part of the bootargs variable
and tell the kernel whether to allow write access to the root filesystem or not.

Variable Description

.mode_ro Tell kernel to mount root filesystem in read-only mode

.mode_rw Tell kernel to mount root filesystem in read-write mode

Table 15: Variables to set set /deny write access for root filesystem

6.5.5 Console Settings

The settings listed in Table 16 modify the console variable as part of the bootargs vari-
able and tell the kernel where to send console messages to.

Variable Description

.console_none Tell kernel to not show any boot messages at all

.console_serial Tell kernel to send boot messages to the serial debug port

.console_display Tell kernel to send boot messages to the display

Table 16: Variables to set console output

6.5.6 Login Settings

The settings listed in Table 17 modify the login variable as part of the bootargs variable
and tell the kernel where to start a login prompt (getty).

92 Linux on F&S Boards

Special F&S U-Boot Features

Variable Description

.login_none Tell kernel to not start a login at all

.login_serial Tell kernel to start login on the serial debug port

.login_display Tell kernel to start login on the display

Table 17: Variables to set login prompt origin

6.5.7 Network Settings

The settings listed in Table 18 modify the network variable as part of the bootargs vari-
able and tell the kernel how to start the Ethernet interface.

Variable Description

.network_off Tell kernel to not activate Ethernet; it must be started manually
or by the network infrastructure in the root filesystem

.network_on Tell kernel to start Ethernet with same settings as in U-Boot

.network_dhcp Tell kernel to start Ethernet with a DHCP request

Table 18: Variables to set network activation

Note

When the network is enabled with this setting, this means that the kernel itself will start the
network. This is very useful (and even necessary) if the root filesystem is accessed via
network (e.g. when using run .rootfs_nfs), but may be undesired in most other
cases. For example if the network cable is not plugged in, or if no DHCP server is re-
sponding, then the kernel will block the boot process indefinitely. So this is usually not
what you want.

The regular way is to keep this network value here at “off” and let the network infrastruc-
ture in the root filesystem do the job of starting the network. This happens later, after the
kernel has finished booting, has mounted the root filesystem and has passed the control
on to the init program. Automatic activation of the network can then be achieved by
modifying the settings in /etc/network/interfaces or similar.

6.5.8 Init Settings

The settings listed in Table 19 modify the init variable as part of the bootargs variable
and tell the kernel whether which file should be used for the init process.

Linux on F&S Boards 93

Special F&S U-Boot Features

Variable Description

.init_init Tell kernel to use file init

.init_linuxrc Tell kernel to use file linuxrc

Table 19: Variables to set init process file

6.5.9 Extra Settings

The extra variable as part of the bootargs variable allows to add arbitrary content to the
kernel command line. There are no predefined variables, just set extra to the required con-
tent. For example to start Linux without showing the Tux logo on the display, use this:

setenv extra logo.nologo

6.5.10 Boot Strategy Examples

Boot kernel and device tree via TFTP, and root filesystem via NFS from the server defined in
U-Boot:

run .kernel_tftp
run .fdt_tftp
run .rootfs_nfs
run .network_on

Boot kernel from MTD partition Kernel, device tree from MTD partition FDT, and the root
filesystem from the UBIFS image in UBI volume rootfs. Do not start the network in Linux
automatically. This is the default setting for F&S boards, for example in the Starterkits.

run .kernel_nand
run .fdt_nand
run .rootfs_ubifs
run .network_off

Boot kernel from the file /boot/my_yummy_kernel from the root filesystem (located in de-
fault position, i.e. in UBI volume rootfs). Use device tree my_yummy_fdt from the same
location.

setenv bootfile my_yummy_kernel
setenv bootfdt my_yummy_fdt
run .kernel_ubifs
run .fdt_ubifs

Start the login prompt on the display instead of on the serial line:

run .login_display

Of course you usually need to call saveenv to save these settings permanently. Otherwise
they will only be used for an immediate boot process started with the boot command. For
example if you use the following command sequence, the system will start once in read-write
mode and then in the future in read-only mode again.

94 Linux on F&S Boards

Special F&S U-Boot Features

run .mode_ro
saveenv
run .mode_rw
boot

This can be useful because if openssh is active in the Linux system, it tries to generate
some cryptographic keys when started for the very first time. But if the root filesystem is
mounted read-only, this is not possible. Then the key generation is skipped and openssh is
not usable. But if it is started in read-write mode once, the keys can be generated and
openssh is working correctly from then on. Just remember to safely shut down the Linux
system in this one case, for example by calling command halt. Any subsequent runs can
and will be done read-only again, because the saved setting of mode is read-only.

Sometimes running one of the predefined variables does not fit your needs. For example
there is no predefined variable to send the console output to /dev/ttymxc2 with 19200
baud. Then simply set the appropriate bootargs component directly, which is the console
variable in this case.

setenv console console=/dev/ttymxc2,19200

6.6 NAND Layout Strategies

A great concern when using NAND flash is the fear of losing any data due to ageing pro-
cesses. We have seen in chapter 3.8.1 that NAND uses ECC (Error Correction Codes) to be
able to detect and correct a small number of bad or flipped bits. And that block refresh can be
used to renew bits that have flipped due to discharging effects, for example after many mil-
lion reads. Block refresh is especially important for read-only data that would never be rewrit-
ten (and thus renewed) otherwise.

But of course this also needs support from the software side. The Unsorted Block Image
concept, or UBI for short, was especially designed to handle exactly these problems. ECC is
used to handle bitflips and it provides automatic block refresh if the number of bitflips in a
page of a block reaches a specific threshold. This is triggered either when regularly reading
any data with many bitflips, or by a low-priority background task that checks all blocks from
time to time for bitflips.

But UBI does even more. UBI provides wear-levelling. It keeps an erase counter for each
block, and if a block has a high erase count, UBI tries to use an other block for this data. It
even moves data of blocks with lower erase count so that these blocks can be used for eras-
ing and writing new data, too. By doing this, UBI keeps all blocks of the UBI region at a sim-
ilar erase count.

Of course this works best if the wear-levelling can use as many NAND blocks as possible. So
having one big UBI works better than two smaller UBIs. And of course any extra MTD parti-
tions, like NBoot, UBoot, UbootEnv, Kernel and FDT are not covered by this mechanism
because they are not part of the UBI region.

In the past this was the reason why we introduced the possibility to move partitions Kernel
and FDT to the UBI region so that they could participate in the UBI wear-levelling. For other
partitions this is not possible. Partition NBoot is accessed by the ROM loader of the SoC and

Linux on F&S Boards 95

Special F&S U-Boot Features

Partition UBoot is accessed by NBoot. They both can not access UBI and therefore these
partitions must stay separate MTD partitions.

However moving these images to UBI also has a disadvantage. To access the UBI region, U-
Boot needs to scan the whole NAND flash to get enough information of where all data is loc-
ated. And if these files are stored in the root filesystem, U-Boot actually needs to mount the
root filesystem, which takes even longer. So moving these images to UBI results in a consid-
erably slower boot time. This is why we keep kernel and device tree in separate MTD parti-
tions. This is simply the fastest mode. And since F&S has added block refresh for arbitrary
NAND data to NBoot and U-Boot, this is also no longer as important regarding data integrity
as before. But we leave the choice to the customer.

Setting a different NAND layout works similar to the boot strategies. We have again some
predefined variables that switch the appropriate setting if they are run. One set of variables
handles the MTD partition layout (Table 20), one handles the UBI volume layout (Table 21).
The difference is, that running these variables actually creates the set of MTD partitions or
UBI volumes. So do not run them more than once.

Variable Description

.mtdparts_std Create separate MTD partitions Kernel and FDT for the Linux ker-
nel and the device tree

.mtdparts_ubionly Do not create MTD partitions Kernel and FDT, both kernel and
root filesystem are supposed to be stored in the UBI located on top
of TargetFS

Table 20: Variables to define the MTD partition table

Variable Description

.ubivol_std Only create the rootfs volume in the UBI on top of TargetFS,
Linux kernel and device tree are supposed to be stored in the root
filesystem

.ubivol_ubi Create kernel, fdt and rootfs volumes in the UBI on top of
TargetFS, i.e. kernel and device tree go to separate volumes

Table 21: Variables for UBI volume creation

The next sub-sections will show in detail how to set up three different strategies.

Note

The following sections modify the size of the MTD partition TargetFS, that is the base for
the UBI. Of course we have to erase TargetFS in this case or UBI will get completely
confused. But after having created the UBI once, you should never erase it again by eras-
ing the contents of TargetFS. Erasing destroys the wear-levelling history that UBI builds
over time, making the whole effort more or less useless. You can write to UBI volumes,
you can even remove UBI volumes and create them again. That is all OK and UBI will

96 Linux on F&S Boards

Special F&S U-Boot Features

take care of all required wear-levelling information. But never erase the underlying Tar-
getFS itself or you will lose all wear-levelling information.

6.6.1 Linux Kernel In MTD partition

Here the kernel and the device tree are located in separate MTD partitions (see Figure 37).
They do not participate in UBI’s wear-levelling but block refresh is done by U-Boot. Loading
is very fast. This is how the system is set up by default.

To prepare the system in this way, use the following commands.

run .mtdparts_std
nand erase.part TargetFS
run .ubivol_std
run .kernel_nand
run .fdt_nand
saveenv

To save the downloaded kernel and device tree images, use the nand command.

<download kernel image, e.g. with tftp>
nand erase.part Kernel
nand write $loadaddr Kernel $filesize

<download device tree image, e.g. with tftp>
nand erase.part FDT
nand write $loadaddr FDT $filesize

6.6.2 Linux Kernel In Raw UBI Volume

Here the kernel and the device tree are located in separate UBI volumes in the UBI region
(see Figure 38). Block refresh is done by UBI and the images participate in UBI wear-level-
ling. Loading speed is medium, because UBI must be scanned in U-Boot.

To prepare the system in this way, use the following commands:

Linux on F&S Boards 97

Figure 38: Linux kernel and device tree in separate UBI volumes

Figure 37: Linux kernel and device tree as separate MTD partitions

NBoot UBoot Kernel FDT

TargetFS
User
Def

Re
fresh

UBoot
Env rootfs

NBoot UBoot

TargetFS
User
Def

Re
fresh

UBoot
Env rootfskernel fdt

Special F&S U-Boot Features

run .mtdparts_ubionly
nand erase.part TargetFS
run .ubivol_ubi
run .kernel_ubi
run .fdt_ubi
saveenv

To save the downloaded kernel and device tree images, use the ubi command. Please note
the different spelling of the volume names. Volume names are all lower-case while MTD par-
titions also have upper-case characters. This is done on purpose so that it is not possible to
inadvertently use command nand with volume names and command ubi with MTD partition
names.

<download image, e.g. with tftp>
ubi part TargetFS
ubi write $loadaddr kernel $filesize

<download device tree image, e.g. with tftp>
ubi write $loadaddr fdt $filesize

6.6.3 Linux Kernel In Root Filesystem

Here the kernel and the device tree are located as files inside of the root filesystem in the
UBI region (see Figure 39). Block refresh is done by UBI and the images participate in UBI
wear-levelling. Loading speed is low because UBI must be scanned and also the root filesys-
tem must be mounted in U-Boot.

To prepare the system in this way, use the following commands:

run .mtdparts_ubionly
nand erase.part TargetFS
run .ubivol_std
run .kernel_ubifs
run .fdt_ubifs
saveenv

In this case the kernel and the device tree are part of the root filesystem, so they are written
together with the other root filesystem files as part of the root filesystem image to the
rootfs UBI volume. There is no way to write the files separately within U-Boot because U-
Boot’s implementation of UBIFS has no write support.

98 Linux on F&S Boards

Figure 39: Linux kernel and device tree are simlpe files in the root filesystem

NBoot UBoot

TargetFS
User
Def

Re
fresh

UBoot
Env rootfs

(including kernel & device tree)

Special F&S U-Boot Features

6.7 Configure eMMC For Enhanced Mode

As seen in Chapter 3.8.2, an eMMC has four predefined hardware partitions: User, Boot1,
Boot2 and RPMB. Furthermore up to four memory areas can be split off from the User space
as separate Generic Partitions GP1 to GP4. This results in up to eight hardware partitions
(see Table 22).

Partition ID Name Meaning Enhanced Mode

0 User User Space Optional (one continuous region)

1 Boot1 Boot information 1 Always

2 Boot2 Boot information 2 Always

3 RPMB Security information Always

4 GP1 Generic Partition 1 Optional (whole partition)

5 GP2 Generic Partition 2 Optional (whole partition)

6 GP3 Generic Partition 3 Optional (whole partition)

7 GP4 Generic Partition 4 Optional (whole partition)

Table 22: Hardware partitions on eMMC and Enhanced Mode

Most eMMC uses MLC, TLC or even QLC flash memory. This means that two, three or even
four bits are stored per memory cell, resulting in a reduced data retention time. To increase
data integrity, eMMC has the option to switch every hardware partition and one continuous
region of the User Space to a so-called Enhanced Mode. Here data is stored with less states
per cell, resulting in better data retention, but at the cost of available memory. This feature is
often called Pseudo-SLC mode, and after activation, you only have half the amount of
memory available. Partitions Boot1, Boot2 and RPMB are already set to Enhanced Mode by
the manufacturer, but all other partitions can be switched to Enhanced Mode, too, if desired.

Attention

This is a write-once option. Once configured, it remains forever and can not be undone.
So be careful when doing this or you may end up with an unrecoverably misconfigured
device.

Partition setup and Enhanced Mode activation have to be done in one single configuration
step. U-Boot has a command mmc hwpartition for doing this. However the original ver-
sion was very inflexible and needed absolute size values for all arguments. It was therefore
nearly useless for an automatic configuration where the specific size of the memory is not
known beforehand. It also used decimal numbers instead of hex numbers, which is very un-
usual for U-Boot, where numbers are typically hex numbers.

Let’s show an example.

Linux on F&S Boards 99

Special F&S U-Boot Features

mmc list

FSL_SDHC: 0
FSL_SDHC: 1
FSL_SDHC: 2

The eMMC memory always uses the highest MMC port number. So we first need to switch to
port 2.

mmc dev 2

switch to partitions #0, OK
mmc2(part 0) is current device

The output with the hardware partition 0 in parenthesis confirms that this is an eMMC and we
are in the User partition.

mmc info

Device: FSL_SDHC
Manufacturer ID: fe
OEM: 14e
Name: MMC04
Bus Speed: 52000000
Mode : MMC High Speed (52MHz)
Rd Block Len: 512
MMC version 4.4.1
High Capacity: Yes
Capacity: 3.6 GiB
Bus Width: 8-bit
Erase Group Size: 4 MiB
HC WP Group Size: 4 MiB
User Capacity: 3.6 GiB
Boot Capacity: 2 MiB ENH
RPMB Capacity: 128 KiB ENH

The MMC information shows us 3.6 GiB of User area that can be switched to Enhanced
Mode. It also shows that each of the Boot partitions is 2 MiB and the RPMB partition is
128 KiB. These partitions are already in Enhanced Mode as you can see from the string ENH
at the end of the last two lines. This setting was done by the manufacturer.

Entry HC WP Group Size shows the unit size that can be modified. When defining Generic
Partitions or when defining a memory region in the User Space to switch to Enhanced Mode,
they have to be multiples of this unit size, which is 4 MiB here.

Command mmc hwpartition needs exact values counted in sectors. So we should de-
termine the number of available sectors first. 3.6 GiB is not accurate enough. Unfortunately
there is no command to return this value, so we use a trick. We try to load data from a very
high sector number that definitely does not exist on the device. This triggers an error mes-
sage and the error message shows the maximum possible value. This is exactly the number
that we need.

mmc read $loadaddr 0x10000000 1

100 Linux on F&S Boards

Special F&S U-Boot Features

MMC read: dev # 1, block # 268435456, count 1 ... MMC: block num-
ber 0x10000001 exceeds max(0x728000)

0 blocks read: ERROR

This means we have 0x728000 sectors available, which is 7503872 in decimal. After switch-
ing to Enhanced Mode, only half the size is left, which is 3751936 sectors. So this is the max-
imum size that we can define.

We need to give a starting offset and the size of the area of the User Space that should be
switched to Enhanced Mode. Both values can be increased or decreased in steps of 4 MiB,
or 8192 sectors. The most common case would be to convert the whole User Space. So this
is from sector 0, and the whole 3751936 sectors.

Nonetheless let us do a check first. By giving check as last argument, the following com-
mand does only verify the validity of the given values.

mmc hwpartition user enh 0 3751936 check

Partition configuration:
 User Enhanced Start: 0 Bytes
 User Enhanced Size: 1.8 GiB
 No GP1 partition
 No GP2 partition
 No GP3 partition
 No GP4 partition

If there are no errors, you can set the values into the hardware by giving set as last argu-
ment. The output is rather similar.

mmc hwpartition user enh 0 3751936 set

Partition configuration:
 User Enhanced Start: 0 Bytes
 User Enhanced Size: 1.8 GiB
 No GP1 partition
 No GP2 partition
 No GP3 partition
 No GP4 partition

As a final step, this setting must be confirmed once more by giving complete as last argu-
ment. Be careful, after this step there is no way back.

mmc hwpartition user enh 0 3751936 complete

Partition configuration:
 User Enhanced Start: 0 Bytes
 User Enhanced Size: 1.8 GiB
 No GP1 partition
 No GP2 partition
 No GP3 partition
 No GP4 partition
Partitioning successful, power-cycle to make effective

Linux on F&S Boards 101

Special F&S U-Boot Features

As the output instructs us, we have to switch the power off and on again. Now the eMMC
memory will come up with the new settings. If you query the MMC information again, it will
show the following now:

mmc dev 2

switch to partitions #0, OK
mmc2(part 0) is current device

mmc info

Device: FSL_SDHC
Manufacturer ID: fe
OEM: 14e
Name: MMC04
Bus Speed: 52000000
Mode : MMC High Speed (52MHz)
Rd Block Len: 512
MMC version 4.4.1
High Capacity: Yes
Capacity: 1.8 GiB
Bus Width: 8-bit
Erase Group Size: 4 MiB
HC WP Group Size: 4 MiB
User Capacity: 1.8 GiB ENH
User Enhanced Start: 0 Bytes
User Enhanced Size: 1.8 GiB
Boot Capacity: 2 MiB ENH
RPMB Capacity: 128 KiB ENH

This shows that the whole User Space has been switched to Enhanced Mode and only
1.8 GiB of memory is left now.

Uff, finally done!

As you can see, this is rather cumbersome. Determining the sector count can not be done
automatically and the conversion from hex values to decimal numbers also seems unneces-
sarily complicated.

This is the reason why F&S has enhanced this command. You can now give hex numbers by
prefixing them with 0x. (However the default without prefix is still decimal to stay compatible
with mainline U-Boot.) And offset and sizes can be given in percent instead of absolute num-
bers by adding a % character. The whole procedure reduces to the following two commands:

mmc hwpartition user enh 0 100% set

mmc hwpartition user enh 0 100% complete

This converts the whole User Space (100%) starting from sector 0. That’s all. You do not
need to know anything at all about the specific sizes of the eMMC device. It will simply work.

102 Linux on F&S Boards

Special F&S U-Boot Features

6.8 Command fsimage To Handle F&S Images

As we have seen previously, storing a file to NAND and eMMC differs. It needs completely
different commands:

● On NAND, it is command nand write and you need to specify a NAND offset or an
MTD partition and the size in bytes.

● On eMMC, it is command mmc write and you need to specify a start block number
and the size in blocks, which is diffcult to get, because $filesize only provides the
size in bytes.

It gets even more complicated when storing NBoot, which consists of several parts where
only a subset needs to be stored, but at different places. Storing these images manually re-
quires a lot of knowledge of the flash layout. None of this is easy, and it is also error-prone.

By using the fsimage command, this will get super easy. Just load the NBoot or U-Boot im-
age to RAM and then save it with fsimage save. Done. You do not have to care where
everything has to go, it will simply work.

There are more subcommands available in fsimage:

Command Function

fsimage save Store NBoot or U-Boot image to the right place

fsimage load [nboot] Load current NBoot image to RAM

fsimage load uboot Load current U-Boot image to RAM

fsimage list List sub-images of the current NBoot/U-Boot image in RAM

fsimage board-id Show the BOARD-ID of the current board

fsimage board-cfg List the board-configuration of the current board

fsimage boot Show the current boot settings

fsimage arch Show the current CPU architechture (e.g. fsimx8mm)

Table 23: fsimage sub-commands

6.8.1 fsimage on ARM32 (PicoCoreMX6UL[100], PicoCoreMX6SX)

On ARM32, only those boards that are booting from eMMC are equipped with a rudimentary
fsimage command, i.e. PicoCoreMX6UL, PicoCoreMX6UL100 and PicoCoreMX6SX. Only
fsimage arch and fsimage save are supported, and only U-Boot can be saved, not
NBoot. The U-Boot extension has to be .nb0.

tftp uboot.nb0

fsimage save

Linux on F&S Boards 103

Special F&S U-Boot Features

6.8.2 fsimage on ARM64 (i.MX8)

On ARM64, U-Boot and NBoot images have the extension .fs. These images have a spe-
cial F&S header prepended that gives information about the image type, size, a description,
and images can even contain sub-images. In fact nboot.fs is a whole collection of smaller
sub-images.

When fsimage saves these files, it always stores two copies. So if one copy fails to load,
the boot process can fall back to the second copy. This makes the boot process very robust.

Here is an example when saving a U-Boot image. You do not have to care where the image
is stored, it will automatically be stored to NAND or eMMC at the right place.

tftp uboot.fs

...

fsimage save

Found unsigned U-BOOT image at 0x40480000 (CRC32 header+image ok)
Booted from Primary SPL, so starting with copy 1

Saving copy 1 to mmc2:
 -- U-BOOT (hwpart 2) --
 Invalidating U-BOOT at offset 0x00180000 size 0x280000... OK
 Writing U-BOOT at offset 0x00180200 size 0x129d40... OK
 Completing U-BOOT at offset 0x00180000 size 0x200... OK

Saving copy 0 to mmc2:
 -- U-BOOT (hwpart 1) --
 Invalidating U-BOOT at offset 0x00180000 size 0x280000... OK
 Writing U-BOOT at offset 0x00180200 size 0x129d40... OK
 Completing U-BOOT at offset 0x00180000 size 0x200... OK

Saving U-Boot complete

The fsimage save command can also be used to save NBoot. In fact it is currently the only
way to install a new NBoot version. Load the new image to RAM and call fsimage save.
Again you do not need to know how this actually works and where the data is stored, it
simply works. Now fsimage save has to do even more. It selects only those parts of NBoot
that are relevant for this specific board and only saves these. If we ever change the layout in
the future, fsimage save even knows how to handle this and will also move other files (U-
Boot and Environment) if this is necessary for the new layout.

tftp nboot-fsimx8mm-2023.10.fs

...

fsimage save

Found unsigned NBOOT image at 0x40480000 (CRC32 header+image ok)
Found NBOOT version 2023.10
Booted from Primary SPL, so starting with copy 1

Saving copy 1 to mmc2:
 -- NBOOT (hwpart 2) --
 Invalidating NBOOT at offset 0x00088000 size 0xf8000... OK
 Writing BOARD-CFG at offset 0x00088200 size 0x460... OK
 Writing FIRMWARE at offset 0x00088660 size 0x40... OK

104 Linux on F&S Boards

Special F&S U-Boot Features

 Writing DRAM-INFO at offset 0x000886a0 size 0x40... OK
 Writing DRAM-TYPE at offset 0x000886e0 size 0x40... OK
 Writing DRAM-FW at offset 0x00088720 size 0x145b0... OK
 Writing DRAM-TIMING at offset 0x0009ccd0 size 0x1a10... OK
 Writing ATF at offset 0x0009e6e0 size 0x9220... OK
 Completing BOARD-CFG at offset 0x00088000 size 0x200... OK
 -- SPL (hwpart 2) --
 Invalidating SPL at offset 0x00048400 size 0x3fc00... OK
 Writing SPL at offset 0x00048600 size 0x1f000... OK
 Completing SPL at offset 0x00048400 size 0x200... OK
 Writing SECONDARY-SPL-INFO at offset 0x00008200 size 0x200... OK
 -- SPL (hwpart 1) --
 Invalidating SPL at offset 0x00048400 size 0x3fc00... OK
 Writing SPL at offset 0x00048600 size 0x1f000... OK
 Completing SPL at offset 0x00048400 size 0x200... OK
 Writing SECONDARY-SPL-INFO at offset 0x00008200 size 0x200... OK

Saving copy 0 to mmc2:
 -- NBOOT (hwpart 1) --
 Invalidating NBOOT at offset 0x00088000 size 0xf8000... OK
 Writing BOARD-CFG at offset 0x00088200 size 0x460... OK
 Writing FIRMWARE at offset 0x00088660 size 0x40... OK
 Writing DRAM-INFO at offset 0x000886a0 size 0x40... OK
 Writing DRAM-TYPE at offset 0x000886e0 size 0x40... OK
 Writing DRAM-FW at offset 0x00088720 size 0x145b0... OK
 Writing DRAM-TIMING at offset 0x0009ccd0 size 0x1a10... OK
 Writing ATF at offset 0x0009e6e0 size 0x9220... OK
 Completing BOARD-CFG at offset 0x00088000 size 0x200... OK
 -- SPL (hwpart 1) --
 Invalidating SPL at offset 0x00008400 size 0x3fc00... OK
 Writing SPL at offset 0x00008600 size 0x1f000... OK
 Completing SPL at offset 0x00008400 size 0x200... OK
 -- SPL (hwpart 2) --
 Invalidating SPL at offset 0x00008400 size 0x3fc00... OK
 Writing SPL at offset 0x00008600 size 0x1f000... OK
 Completing SPL at offset 0x00008400 size 0x200... OK

Saving NBoot complete
New BOARD-CFG is now active

The fsimage load command can be used to check the integrity of the stored images. The
command tries to load both copies and verifies checksums and also compares the two cop-
ies. If one of the images (or a part thereof) fails to load, a warning is issued.

In the following example, the second copy of the BOARD-CFG is corrupt:

fsimage load

Loading SPL from mmc2
 Loading copy 0 from hwpart 1 offset 0x00008400 size 0x1f200... OK
 Loading copy 1 from hwpart 2 offset 0x00048400 size 0x1f200... OK

Loading BOARD-CFG from mmc2
 Loading copy 0 from hwpart 1 offset 0x00088000 size 0x660... OK
 Loading copy 1 from hwpart 2 offset 0x00088000 size 0x660... BAD
CRC32 FAILED (-84)
 Warning! One copy corrupted! Saving NBoot again may fix this.

Linux on F&S Boards 105

Special F&S U-Boot Features

Loading FIRMWARE from mmc2
 Loading copy 0 from hwpart 1 offset 0x00088660 size 0x1f2a0... OK
 Loading copy 1 from hwpart 2 offset 0x00088660 size 0x1f2a0... OK

NBoot successfully loaded to 0x40480000

Nonetheless loading succeded, there was a valid copy available. If you call fsimage save
now, NBoot will be saved again, fixing the corrupted parts while doing this. So after this se-
quence, NBoot should be fully functional again.

Remark

This sequence of fsimage load and then fsimage save will not work in Secure Boot
mode. To be able to save NBoot, NBoot as a whole must be correctly signed. But as only
parts of NBoot are actually stored on the board, the NBoot image loaded with fsimage
load obviously only contains this subset of the original NBoot without a valid signature.
Which means fsimage save will refuse this image because of the missing signature.

To get an impression on how complex a current NBoot file actually is, you can use command
fsimage list. This command lists all sub-images of NBoot:

tftp nboot-fsimx8mm-2023.10.fs

...

 # fsimage list

Content of F&S image at addr 0x40480000

offset size type (description)
--
00000000 000610a0 NBOOT (fsimx8mm)
00000040 0001f200 SPL (fsimx8mm)
0001f280 00007aa0 BOARD-INFO (fsimx8mm)
0001f2c0 00000530 BOARD-CFG (PCoreMX8MM-FERT1)
0001f830 00000560 BOARD-CFG (PCoreMX8MM-FERT2)
0001fdd0 00000620 BOARD-CFG (PCoreMX8MM-FERT3)
00020430 00000620 BOARD-CFG (PCoreMX8MM-FERT4)
00020a90 00000600 BOARD-CFG (PCoreMX8MM-FERT9)
000210d0 00000570 BOARD-CFG (PCoreMX8MM-FERT12)
00021680 00000590 BOARD-CFG (PCoreMX8MM-FERT13)
00021c50 00000560 BOARD-CFG (PCoreMX8MM-FERT15)
000221f0 00000580 BOARD-CFG (PCoreMX8MMr2-FERT3)
000227b0 00000580 BOARD-CFG (PCoreMX8MMr2-FERT4)
00022d70 00000560 BOARD-CFG (PCoreMX8MMr2-FERT9)
00023310 00000570 BOARD-CFG (PCoreMX8MMr2-FERT12)
000238c0 00000590 BOARD-CFG (PCoreMX8MMr2-FERT13)
00023e90 00000560 BOARD-CFG (PCoreMX8MMr2-FERT15)
00024430 000005c0 BOARD-CFG (PCoreMX8MX-FERT5)
00024a30 00000600 BOARD-CFG (PCoreMX8MX-FERT6)
00025070 000005c0 BOARD-CFG (PCoreMX8MX-FERT7)
00025670 000005b0 BOARD-CFG (PCoreMX8MX-FERT8)
00025c60 00000560 BOARD-CFG (PCoreMX8MX-FERT17)
00026d60 00032fa0 FIRMWARE (fsimx8mm)

106 Linux on F&S Boards

Special F&S U-Boot Features

00026da0 00029d40 DRAM-INFO (fsimx8mm)
00026de0 0001c740 DRAM-TYPE (lpddr4)
00026e20 00014570 DRAM-FW (lpddr4)
0003b3d0 000019d0 DRAM-TIMING (lpddr4_k4f8e3s4hd_mgcl)
0003cde0 00002440 DRAM-TIMING (lpddr4_k4f8e304hb_mgcj)
0003f260 00002140 DRAM-TIMING (lpddr4_k4f6e3s4hm_mgcl)
000413e0 00002140 DRAM-TIMING (lpddr4_fl4c2001g_d9)
00043560 0000d580 DRAM-TYPE (ddr3l)
000435a0 0000c000 DRAM-FW (ddr3l)
0004f5e0 00000a60 DRAM-TIMING (ddr3l_2x_im4g16d3fdbg107i)
00050080 00000a60 DRAM-TIMING (ddr3l_2x_mt41k128m16tw)
00050b20 000091e0 ATF (fsimx8mm)
00059d40 00007360 EXTRA (fsimx8mm)
00059d80 000031b0 BASH-SCRIPT (addfsheader)
0005cf70 00004130 BASH-SCRIPT (fsimage)

To show the contents of the current BOARD-CFG, use this command:

fsimage board-cfg

Found unsigned NBOOT image at 0x40480000 (CRC32 header+image ok)
Found NBOOT version 2023.10
FDT part of BOARD-CFG located at 0x404a0470

/ {
 board-cfg {
 board-cfg = "PCoreMX8MM-FERT4";
 board-cfg-version = <0x00000002>;
 board-name = "PicoCoreMX8MM-LPDDR4";
 dram-type = "lpddr4";
 dram-timing = "lpddr4_k4f8e3s4hd_mgcl";
 dram-size = <0x00000400>;
 dram-chips = <0x00000001>;
 boot-dev = "MMC3";
 fuse-bankword = <0x00010003>;
 fuse-mask = <0x10007fff>;
 fuse-value = <0x10002800>;
 have-emmc;
 have-sgtl5000;
 have-eth-phy;
 have-wlan;
 have-lvds;

 PCoreMX8MM-FERT4.110 {
 board-rev = <0x0000006e>;
 };

 PCoreMX8MM-FERT4.120 {
 board-rev = <0x00000078>;
 have-rtc-pcf85063;
 };

 PCoreMX8MM-FERT4.130 {
 board-rev = <0x00000082>;
 have-rtc-pcf85263;
 };
 };

Linux on F&S Boards 107

Special F&S U-Boot Features

 nboot-info {
 version = "2023.10";
 support-crc32;
 save-board-id;
 uboot-with-fsh;
 uboot-emmc-bootpart;
 emmc-both-bootparts;

 nand {
 spl-start = <0x00080000 0x00100000>;
 spl-size = <0x00080000>;
 nboot-start = <0x00180000 0x002c0000>;
 nboot-size = <0x00140000>;
 uboot-start = <0x00500000 0x00800000>;
 uboot-size = <0x00300000>;
 env-start = <0x00480000 0x004c0000>;
 env-size = <0x00004000>;
 env-range = <0x00040000>;
 };

 emmc-boot {
 spl-start = <0x00008400 0x00048400>;
 spl-size = <0x0003fc00>;
 nboot-start = <0x00088000>;
 nboot-size = <0x000f8000>;
 uboot-start = <0x00180000>;
 uboot-size = <0x00280000>;
 env-start = <0x00000000>;
 env-size = <0x00004000>;
 };

 sd-user {
 spl-start = <0x00008400 0x00048400>;
 spl-size = <0x0003fc00>;
 nboot-start = <0x00088000 0x00448000>;
 nboot-size = <0x000f8000>;
 uboot-start = <0x00180000 0x00540000>;
 uboot-size = <0x002c0000>;
 env-start = <0x00440000 0x00444000>;
 env-size = <0x00004000>;
 };
 };
};

108 Linux on F&S Boards

Common Ways of System Installation

7 Common Ways of System Installation
In this chapter we will present some common scenarios how the system software is typically
installed on our boards. The variables arch, platform, bootfile and bootfdt supply
valuable information to be able to write generic installation scripts. If we print these variables
we see something like this:

printenv arch platform bootfile bootfdt

arch=fsimx8mm
platform=picocoremx8mm-lpddr4
bootfile=Image
bootfdt=picocoremx8mm-lpddr4.dtb

The example shows that we are on the F&S i.MX8MM architecture, the board is a Pico-
CoreMX8MM with LPDDR4, the default kernel name is Image and the default device tree
name is picocoremx8mm-lpddr4.dtb. These variables can be used to download the files
in a very generic manner that will work on all F&S boards.

7.1 Installation to NAND Flash

This is the most common scenario when developing with our NAND based boards, typically
on ARM32. You have new versions of some images available on your PC (Server) and want
to download them via TFTP and store them in NAND flash (see Figure 40).

Linux on F&S Boards 109

Figure 40: Download files with TFTP, store in NAND flash

NBoot UBoot Kernel FDT
TargetFS

rootfs

LAN

Server

U-Boot Image
Kernel Image
Device Tree Image

Root Filesystem Image

NAND

Common Ways of System Installation

There is no difference whether you want to install the whole system or just simply single files.
Each of the following steps will install or replace one image type. Only the commands are
shown, not the command output.

Replace U-Boot in MTD partition UBoot on ARM32:

tftp uboot.nb0
nand erase.part UBoot
nand write $loadaddr UBoot $filesize

Replace U-Boot in MTD partition UBoot on ARM64:

tftp uboot.fs
fsimage save

Replace Linux kernel image in MTD partition Kernel.

tftp $bootfile
nand erase.part Kernel
nand write $loadaddr Kernel $filesize

Replace device tree in MTD partition FDT.

tftp $bootfdt
nand erase.part FDT
nand write $loadaddr FDT $filesize

Replace the root filesystem in UBI volume rootfs on top of MTD partition TargetFS.

tftp rootfs-$arch.ubifs
ubi part TargetFS
ubi write $loadaddr rootfs $filesize

Of course instead of downloading the files via tftp, you can also use any other way, like
loading them from a USB device or from an SD Card. Experience has shown that tftp is the
fastest way.

7.2 Installation to eMMC

This is the scenario when developing with our eMMC based boards, typically on ARM64.
Here the situation is slightly more complex, because the User part of eMMC is using software
partitions like System, RootFS and Data (see Figure 41). While U-Boot is capable of working
with partitions based on the Microsoft MBR partition table (Master Boot Record) and the GPT
partition table (GUID Partition Table), there are still no commands to create these partitions
and the partition table.

110 Linux on F&S Boards

Figure 41: Typical eMMC layout

Boot1User

MBR System RootFS
NBoot, U-Boot,

UBootEnv
(Copy 0)

Data

RPMBBoot2

NBoot, U-Boot,
UBootEnv
(Copy 1)

Common Ways of System Installation

The only way to get the partition table installed is by creating the table on the PC and then
copy the image to the board. The following table shows the partition layout as F&S is using in
its default implementations, but you are of course free to choose a different layout.

Offset in bytes
(blocks)

Size in bytes
(blocks)

Content

Partition
Table

0x00000000
(0x0)

0x8000
(0x40)

MBR/GPT (32 KiB)

Reserved/
U-Boot

0x00008000
(0x40)

0x7f8000
(0x3fc0) Raw data (8160 KiB)

System
0x00800000

(0x4000)
0x05800000
(0x2c000)

FAT32: Kernel, device trees (88 MiB)

RootFS
0x06000000
(0x30000)

n * 0x200
(n)

EXT4 (size configured in Yocto/Buildroot)

... Data partition or similar

Table 24: Software partitions on eMMC

In fact when using an F&S predefined configuration in Yocto or Buildroot, the build process
will already create a so-called sysimg that contains exactly this layout above. It has the par-
tition table as MBR, the Reserved region, the System partition with Kernel and .dtb device
trees already included and the RootFS partition with the root filesystem already included.

Remark

fsimx8
In the past, the Reserved region was used to store the U-Boot image. With NBoot after
2023.08, U-Boot was moved to the Boot1/2 hardware partitions and does not need any
space in the User area anymore. However with respect to the remaining partitions, we de-
cided to keep the Reserved area to stay compatible with the previous (and NXP’s) layout.

fsimx6
U-Boot is still in the User partition at 0x00008000

Of course downloading these system images to the board using tftp like in the NAND case
would theoretically also work. But unfortunately these system images are rather big and do
not fit into RAM. And because tftp does not support downloading arbitrary parts of a file,
this approach is typically not a valid option. In the following sections we will use an SD card
or a USB pendrive to install these system images.

7.2.1 Installation From SD Card/USB Pendrive With Same Layout

In this scenario you use your development PC to prepare an SD card or USB pendrive with
all partitions and files that you want to install on the board. You can use your preferred tools

Linux on F&S Boards 111

Common Ways of System Installation

to partition the device and create the filesystems, then you simply copy all the files to these
partitions. Of course this step may be arbitrary complex until all necessary information is
stored on the device.

The simplest way is to copy the sysimg to the SD card (or USB pendrive) using low-level
commands, like dd in Linux and dd for Windows or HDD Raw Copy Tool on Windows. This
means the device will have the same layout as later the eMMC.

Then you insert this card into the board. The idea is to do a low-level copy sector by sector of
this SD card to the local eMMC memory. This means the actual data structure of the SD
card, i.e. how many partitions there are, how big they are and what filesystem types they rep-
resent, is completely irrelevant at this point. The eMMC will have exactly the same structure
afterwards. See Figure 42.

The biggest problem here is that the image of the whole SD card will not fit into RAM in one
go. So it is necessary to split the data into smaller parts. Assume a 1 GB SD card (957 MiB =
0x001DE800 sectors) as source on MMC port 0. The eMMC device is on MMC port 2, RAM
is 512 MiB. For example you can split the content in parts of 256 MiB (=0x00080000 sec-
tors). The last part is slightly smaller then. The following sequence of commands will perform
the copy. Only the commands are shown, not the output.

mmc dev 0
mmc read $loadaddr 0x0 0x80000
mmc dev 2
mmc write $loadaddr 0x0 0x80000
mmc dev 0
mmc read $loadaddr 0x80000 0x80000
mmc dev 2
mmc write $loadaddr 0x80000 0x80000
mmc dev 0
mmc read $loadaddr 0x100000 0x80000
mmc dev 2
mmc write $loadaddr 0x100000 0x80000
mmc dev 0

112 Linux on F&S Boards

Figure 42: Low-level copy external SD card to internal eMMC

User (HW-Partition 0)

... …

eMMC

SD Card/USB pendrive

Data area

... …

Common Ways of System Installation

mmc read $loadaddr 0x180000 0x5e800
mmc dev 2
mmc write $loadaddr 0x180000 0x5e800

If you use a USB pendrive instead of an SD card, then the read commands would use usb
instead of mmc and switching the MMC device with mmc dev in between would not be neces-
sary. But loading small parts is still necessary.

The advantage of this solution is that you can use well-known tools on your PC to create the
source device: partitioning, formatting, file copy, everything works as you are used to from
your daily life when dealing with SD cards or USB sticks. Of course also graphical tools like
gparted and your regular file explorer can be used.

The big disadvantage is that you also need to copy empty space. So for example if only 20%
of the device is actually filled with data and the remaining part is just free space, then you still
have to copy the entire device, because individual parts of the payload data may be distrib-
uted over the whole device. Copying these large images takes quite some time. And if you
have to produce thousands of devices, this will sum up.

7.2.2 Installation From SD Card/USB Pendrive With System Image File

This scenario is rather similar to the previous one. But instead of actually setting up the SD
card or USB pendrive with the same format as later in eMMC, you just create an image file of
the final system layout, including the partition table and all software partitions. The sysimg is
in fact an example for such a system image file. You simply copy this image file to the SD
card or USB pendrive like any other file. It even does not matter if there are other files there,
too, the device simply needs to have enough space for the system image.

Do not forget to unmount/eject the device correctly before pulling it from the development PC
or you may have a corrupt image file and a non-functional system later.

The problem with the large file not fitting into RAM strikes again. Fortunately reading files
from a filesystem allows reading arbitrary parts. You just have to give the size of the part and
the offset where to start loading as additional arguments to the U-Boot load command.

Linux on F&S Boards 113

Figure 43: Copy sysimg to internal eMMC

User (HW-Partition 0)

... …

eMMC

SD Card/USB pendrive

eMMC-<arch>.sysimg

Common Ways of System Installation

A second problem is that the load command uses bytes to define offset and size, while the
mmc write command uses blocks for offset and size, requiring a conversion.

Here is an example assuming the same sizes as before, i.e. an image with 1 GB image and
splitting the file in parts of 256 MiB. Please note the byte values in load and the block values
in mmc write and also the smaller last part. The first command selects the eMMC device
for low-level writing. The high-level read from the filesystem can work independently from
this, so there is no need to switch back and forth.

mmc dev $mmcdev
load mmc 0 $loadaddr eMMC-${arch}.sysimg 0x10000000 0x0
mmc write $loadaddr 0x0 0x80000
load mmc 0 $loadaddr eMMC-${arch}.sysimg 0x10000000 0x10000000
mmc write $loadaddr 0x80000 0x80000
load mmc 0 $loadaddr eMMC-${arch}.sysimg 0x10000000 0x20000000
mmc write $loadaddr 0x100000 0x80000
load mmc 0 $loadaddr eMMC-${arch}.sysimg 0x0bd00000 0x30000000
mmc write $loadaddr 0x180000 0x5e800

7.2.3 Installing Individual Files

In this scenario we want to install single files (see Figure 44).

We assume that the system was installed at least once with one of the methods above. This
means the partition table is valid and we can access the individual partitions. You can verify
this with the following command:

mmc part

Partition Map for MMC device 2 -- Partition Type: DOS

Part Start Sector Num Sectors UUID Type
 1 16384 180224 00000000-01 0c Boot
 2 196608 999426 00000000-02 83

114 Linux on F&S Boards

Figure 44: Installing individual files on eMMC

User (HW-Partition 0)

MBR System RootFS Data

eMMC

U-Boot Image

System Filesystem Image

MBR Partition Table

Root Filesystem Image

Boot1
NBoot,
U-Boot

Boot2
NBoot,
U-Boot

Common Ways of System Installation

You can see the System partition beginning at block 16384 (=0x4000), size 180224
(=0x2c000) blocks with type 0x0c (FAT32 with LBA) and the RootFS partition beginning at
block 196608 (=0x30000) with type 0x83 (Linux).

From then on, you can also download and install individual files. As long as they fit into RAM,
you can load them with tftp, from SD card or USB pendrive. If a file exceeds RAM size and
you have to download it in smaller chunks, then tftp will not work. In the following examples
we skip the download command and only show the commands to save the files.

To save a new U-Boot version

fsimage save

To save a new root filesystem.

setexpr blkcnt $filesize + 0x1ff
setexpr blkcnt $blkcnt / 0x200
mmc write $loadaddr 0x30000 $blkcnt

Please be careful, if the new image exceeds the partition size, you will overwrite a part of the
next partition. In this case you may need to reinstall larger parts of the system.

Replacing the Linux kernel or a single device tree file is more complicated. The F&S version
of U-Boot does not provide a fatwrite command. In our point of view, the main purpose of
U-Boot is to bring data from a PC to the board for installation purposes. Unfortunately when
there is a write command to a filesystem, it is also possible to bring data from the board to
some external media like SD card or USB pendrive. In other words this makes it very easy to
steal software. This is why we do not include the fatwrite command.

Unfortunately this also prohibits writing single files to the System partition that holds Linux
kernel and device trees. So at the moment, there are two options: You could either use com-
mand ums to mount the System partition on your PC and replace the files there, or you can
provide a new version of the whole System partition image and replace the whole partition. In
the latter case, after loading the image to RAM, you can save it with:

setexpr blkcnt $filesize + 0x1ff
setexpr blkcnt $blkcnt / 0x200
mmc write $loadaddr 0x4000 $blkcnt

Remark

Buildroot already creates this System Partiton automatically. It is called boot.vfat and is
located in the images/ directory.

7.3 F&S Update and Installation Scripts

The previous examples have shown that it takes several steps to install the system software,
especially if the images are large and need to be split. F&S provides an install script that sim-
plifies the installation process considerably, for example by automatically splitting the
sysimg in smaller parts and downloading the parts one after the other. The script works in
conjunction with the Install/Update/Recover mechanism (see Chapter 6.4) and can be used
to install the system from an SD card or USB pendrive.

Linux on F&S Boards 115

Common Ways of System Installation

You can also use this script as a basis for your own installation process, for example to be
used in your production or even for updates in the field.

116 Linux on F&S Boards

Working With Linux

8 Working With Linux
###TODO###

F&S Improvements: bdinfo, Boot process, Init-System. /proc, filesystems, read-only rootfs,
Buffer-Cache.

Some parts may go here, some to chapter 2.

Configuration of the kernel, device drivers as modules or directly as part of the kernel image.

How is Linux built, usually as part of Buildroot or Yocto, so that kernel modules are automat-
ically stored in the rootfs without any additional steps.

8.1 Busybox

Busybox instead of single command line tools.

8.2 Device Trees

###TODO###

8.3 Devices And Device Drivers

The Linux device driver system is quite simple, but nonetheless very effective. Linux distin-
guishes platform devices from device drivers. The platform device is the piece of hardware it-
self, for example a CPU core, a memory, a system communication bus, a peripheral device,
or an external chip. And the device driver is the code that can handle this platform device.

In 45 you can see an imaginary hardware platform with all its platform devices, either within
the System-on-Chip (SoC) or externally. Some of these platform devices have interfaces to
the outside and some are just used internally. For a working system, Linux needs to know

Linux on F&S Boards 117

Figure 45: Platform devices on an imaginary hardware

SoC

UART1

UART2

UART3

USB

ETH

I2C1

I2C2 SPI

RAM

ADCRTC

FLASH
System Bus

CPU
CORE

Working With Linux

about all these platform devices and whether they are used or not. For example in this plat-
form, UART2, though available on the SoC, is not used, because it is not needed.

Linux needs to include the code for all device drivers for these devices. Of course one driver
can handle several instances of the same platform device, like in the case of UART and I2C
in the example above.

The latter part (including device drivers) is quite simple. Just call make menuconfig and
activate the appropriate menu entries in the Device Drivers section. But the former part
(providing the platform devices) is more challenging as it requires a deep knowledge of the
specific hardware available on this platform and in the past always involved additional kernel
code, the so-called board support code. But this has changed now to device trees.

8.4 Old Way With Board Support Code

For quite a long time, providing the platform devices for a specific platform was done by
adding a board support file to the kernel. The functions of this regular C source code file
were called during the boot phase of the kernel and board-specific code that knew all the de-
tails of the board hardware, created a list of all available platform devices and registered
them with the kernel. Thus the board support code was part of the final kernel image. See
46.

118 Linux on F&S Boards

Working With Linux

Every time a platform device found a matching device driver, the device was activated. If
either side was missing, the device was not available in the running kernel. For example
UART2 was not available because it was not added as a platform device, even though the
SOC_UART driver was present.

But in the world of embedded systems, this concept with only one board support file was very
unsatisfactory. Embedded systems vary quite heavily, from very small and restricted systems
to full-featured and very complex systems. As we can see in our example, already the core of
an embedded system, the System-on-Chip (SoC), offers quite a lot of devices, but these
devices differ considerably from manufacturer to manufacturer, providing more, less or simply
different periphery. This scaled not very well with the platform specific support code and lead
to a situation where embedded Linux systems were very self-concentrated. Each system had
its own kernel that could only run on this one system and nowhere else.

In an attempt to improve the situation, Machine IDs were invented, especially in the ARM
branch of Linux. For each platform that should officially be supported in Linux, the developers
had to request a unique Machine ID. This Machine ID was passed from the bootloader to the
kernel and based on this ID, the kernel decided which platform support code to start. This al-
lowed to add several different board support files to one kernel image, and such a kernel im-
age could run on a few different platforms. See 47.

Linux on F&S Boards 119

Figure 46: Old way: Device drivers and board support are both in the kernel image

SoC

UART1

UART2

UART3

USB

ETH

I2C1

I2C2 SPI

RAM

ADCRTC

FLASH
System Bus

CPU
CORE

Device Drivers

SOC_UART

SOC_SPI

SOC_I2C

SOC_USB

I2C_RTC

SPI_ADC

Board Support Code

register_device(UART1);
register_device(UART3);
register_device(USB);
register_device(ETH);
register_device(SPI);
register_device(I2C1);
register_device(I2C2);
register_device(RTC);
register_device(ADC);

Kernel Image

...

...

...

Working With Linux

However this concept still had some major flaws. Even the smallest modification of the board
configuration, like changing the conversion rate of an A/D Converter (ADC), the resolution of
an LC-Display or the number of a GPIO pin, required changes in the board support source
code and thus a recompilation of the kernel. And board support was only possible for existing
platforms. Every new platform needed additional platform support code and therefore resul-
ted in a new kernel version. And last but not least, people often added other code to the
board support that did not fit anywhere else, just to avoid having to add an own driver file.

Hence the Linux people further considered all these aspects and finally came up with a com-
pletely new way of handling platform devices by using device trees.

120 Linux on F&S Boards

Figure 47: Old way: Board support for several platforms with Machine IDs

SoC

UART1

UART2

UART3

USB

ETH

I2C1

I2C2 SPI

RAM

ADCRTC

FLASH
System Bus

CPU
CORE

Machine ID 4515

Device Drivers

SOC_UART

SOC_SPI

SOC_I2C

SOC_USB

I2C_RTC

SPI_ADC

Board Support Code ID 4515

register_device(UART1);
register_device(UART3);
register_device(SPI);
register_device(USB);
register_device(ETH);
register_device(I2C1);
register_device(I2C2);
register_device(RTC);
register_device(ADC);

Kernel Image

...

...

...

register_device(UART1);
register_device(UART2);
register_device(SPI);
register_device(ETH);
register_device(I2C1);
register_device(I2C2);
register_device(EEPROM);

Board Support Code ID 4875

SoC

UART1

UART2

UART3

USB

ETH

I2C1

I2C2 SPI

RAM

EEPROM

FLASH
System Bus

CPU
CORE

Machine ID 4875

Working With Linux

8.5 New Way With Device Trees

The basic idea behind device trees is to separate all board specific stuff from the kernel. The
kernel itself should be as generic as possible. Of course it still contains all the device drivers,
but everything regarding platform devices is now removed from the kernel image and moved
to a separate file called device tree. A device tree is basically nothing more than the list of
platform devices that are available on a specific platform.

The device tree is defined as a text file with a special syntax and the filename extension
.dts (device tree source). The syntax is used to define nodes and properties. Each node
represents a device of the platform, for example an A/D Converter (ADC). The properties tell
how the node (=ADC) behaves in detail. For example one property of a node representing
such an ADC may be the conversion rate, i.e. how many values are sampled per second.

This text file is converted by the device tree compiler dtc to a binary "blob" with filename ex-
tension .dtb (device tree blob). This binary file can either be appended to the kernel image
file, or it can be handled separately. We at F&S have decided to handle it separately, be-
cause then you can use one and the same kernel image in combination with many different

Linux on F&S Boards 121

Figure 48: New way: Device tree is separate from the kernel image

SoC

UART1

UART2

UART3

USB

ETH

I2C1

I2C2 SPI

RAM

ADCRTC

FLASH
System Bus

CPU
CORE

Device Drivers

SOC_UART

SOC_SPI

SOC_I2C

SOC_USB

I2C_RTC

SPI_ADC

Device Tree Image

/ {
UART1 {...};
UART3 {...};
SPI {...};
USB {...};
ETH {...};
I2C1 {...};
I2C2 {...};
RTC {...};
ADC {...};

};

Kernel Image

...

...

Working With Linux

device tree binaries and vice versa. In our opinion, the combined version contradicts the
strict separation to a certain degree.

Like the image of the kernel itself, the device tree blob is downloaded to the board and stored
in an own partition. When the system boots, the bootloader U-Boot loads both images to
RAM and then passes the device tree address (like the optional initial ramdisk address) to
the kernel.

122 Linux on F&S Boards

Figure 49: New way: One device tree per platform

SoC

UART1

UART2

UART3

USB

ETH

I2C1

I2C2 SPI

RAM

ADCRTC

FLASH
System Bus

CPU
CORE

Platform 1

SoC

UART1

UART2

UART3

USB

ETH

I2C1

I2C2 SPI

RAM

EEPROM

FLASH
System Bus

CPU
CORE

Platform 2

Device Drivers

SOC_UART

SOC_SPI

SOC_I2C

SOC_USB

I2C_RTC

SPI_ADC

Device Tree Image Platform 2

/ {
UART1 {...};
UART2 {...};
SPI {...};
ETH {...};
I2C1 {...};
I2C2 {...};
EEPROM {...};

};

Kernel Image

...

...

Device Tree Image Platform 1

/ {
UART1 {...};
UART3 {...};
SPI {...};
USB {...};
ETH {...};
I2C1 {...};
I2C2 {...};
RTC {...};
ADC {...};

};

Working With Linux

8.6 Advantages of Device Trees

The biggest advantage is the flexibility. If anything in the board configuration changes, like
the conversion rate of the ADC in the example above, then only the device tree file has to be
recompiled with the device tree compiler, which is just a matter of seconds. And then only
this file with a few kilobytes has to be replaced on the board. The main kernel image can re-
main the same.

To support several different platforms, we simply provide several device trees, one device
tree per platform (see 49). For example if an F&S architecture consists of the boards Pico-
COM, armStone and efus, then each of these boards has its own device tree file. But they
can all share the same kernel image.

It is also very simple to create application specific device trees. For example you can prepare
your own device tree, where all additional platform devices of your own application-specific
hardware are added, the settings (properties) of the existing devices are modified and all
devices that are not needed on your hardware are completely left out. Then just compile this
new tree, replace it on the board, and you are done. And still the kernel can remain the
same.

And such a kernel is also capable to support new boards that are not available yet. So in the-
ory, adding a new board to our board family in the future just requires defining a new device
tree. Only if we need a device driver that is missing in the current kernel, then we have to ex-
pand the kernel configuration and need to recompile the kernel.

We even have the vision that in the future we can have kernels that span different architec-
tures. One single kernel image that can be used on fsimx6, fsimx6ul, fsimx6sx and maybe
even on fsvybrid and other CPU types.

8.7 Built-in Drivers And Kernel Modules

###TODO###

Show difference, also explain grey area with respect to closed source modules.

Linux on F&S Boards 123

Using the Standard System and Devices

9 Using the Standard System and Devices
###TODO###

Maybe move to end of document as reference.

Yocto:

The Yocto rootfs is mounted read-write by default. To build a read-only rootfs add the option
“-m ro” when calling the fus-setup-release script to setup your Yocto build.

Buildroot:

By default, the standard root filesystem is mounted read-only. Therefore you can not create
files unless you go to a directory like /tmp that is located in a RAM disk. This is to make the
system as stable as possible. If the root filesystem is mounted read-only, it is usually no prob-
lem to just switch off the power.

If you want to remount the filesystem in read-write mode, just say

mount -o remount,rw /

Note the slash / that is denoting the mount point of the root directory. Now you can create
files everywhere. But remember that written data is often buffered in RAM first and is not im-
mediately stored on the media itself. If you simply switch off the power now, some still RAM
buffered data may be lost. So in this case it is important to actually shut down the system
with

halt

or restart with

reboot

Or you can remount the root filesystem back to read-only after applying the changes with

mount -o remount,ro /

All these commands will force the system to actually write any buffered data to the media.

The /dev directory is also built on top of a RAM disk. This allows the kernel to create and re-
move device entries dynamically. For example if a USB stick is attached, a device /dev/
sda1 is automatically created. And when the USB stick is unplugged, the device is also auto-
matically removed again.

There are two systems in Buildroot that can do this. A very small and rudimentary system is
provided by Busybox and is called mdev. But the more powerful system is an own package
called udev. The F&S platforms use udev as they need features that are not well supported
by mdev, for example dynamic loading of firmware files when devices are activated at
runtime. Also the input daemon evdev, used for touch input, requires udev support.

124 Linux on F&S Boards

Using the Standard System and Devices

9.1 Sysfs

Sysfs is a virtual file system in Linux. As the name suggests, it exports information about
devices and drivers from the kernel device model to user space, and is also used for config-
uration.

Devices that want to share information or want to accept configuration settings, create sub-
directories below the /sys directory. The subdirectories can contain virtual text files. So for
example if a touch panel can accept some sensitivity configuration, it would create a file
sensitivity there. By reading data from the file, we could query the current setting. And
by writing a new value to the file, we could set a new sensitivity value.

Many things can be queried and modified in this way. In fact the Linux implementation of
many tools and utilities often simply looks at the /sys directory to perform its task.

Most devices can be found in the subtree under /sys/devices, subdivided into categories
like cpu, platform, software, system and virtual. These categories represent the
place where the device is located in the system. There is a directory /sys/class. Here the
devices are sorted by their function. The following example lists all available classes on
fsimx6.

ls /sys/class/

ata_device firmware mdio_bus ptp thermal
ata_link gpio mem pwm tty
ata_port gpu_class misc regulator ubi
backlight graphics mmc_host rtc udc
bdi hwmon mtd scsi_device vc
block i2c-dev mxc_ipu scsi_disk video4linux
bluetooth ieee80211 mxc_vpu scsi_host vtconsole
devcoredump input net sound watchdog
dma lcd power_supply spi_master
drm leds pps spidev

For example access the RTC subsystem:

cat /sys/class/rtc/rtc0/date

Show the CPU core temperature (in 1/1000 °C):

cat /sys/class/thermal/thermal_zone0/temp

Show board specific information:

cat /sys/bdinfo/board_revision

9.2 bdinfo

###TODO###

Linux on F&S Boards 125

Using the Standard System and Devices

9.3 Serial

The default speed is 115200 bit/s. On NXP CPUs, the devices are called /dev/ttymxc<n>,
where <n> is a number starting with 0. One port is usually used as serial debug port where
all console messages are sent to. You can use input and output redirection to use a serial
port from the command line.

Example:

echo Hello > /dev/ttymxc2

Show characters that arrive on port ttymxc2:

cat < /dev/ttymxc2

Usually character input is line buffered, so you will only see information after sending Return.

Remark

The default setting for serial ports in Linux echo each character that arrives. So if you con-
nect one serial port to a second serial port with a Null-Modem cable, sending a single char-
acter will result in an endless loop. Each side will echo the character indefinitely. You can
use stty to change this behaviour.

9.4 CAN

The CAN driver uses Socket CAN, i.e. the CAN bus is accessed as a network device, similar
to an ethernet card. If the driver is available, you can find a can0 device when issuing the
command

ifconfig -a

But better use the newer ip program as the older ifconfig does not know anything more
detailed about CAN controllers.

ip link

Before you can activate the CAN device, you have to set the baud rate. This requires the ip
program. For example to set 125000 bit/s for CAN and activate, use this command:

ip link set can0 up type can bitrate 125000

Now you can create sockets that access the CAN device. Some examples are provided in
the package can_utils in Buildroot (can_tx.c, can_rx.c, candump.c, cansend.c).

9.5 Ethernet

To activate the ethernet port in Linux, you have to configure the network device first. For ex-
ample to use IP-Address 10.0.0.242, you can use the command

ifconfig eth0 10.0.0.242 netmask 255.0.0.0 up

126 Linux on F&S Boards

Using the Standard System and Devices

Then you can use network commands, e.g.

ping 10.0.0.121

There is also a DHCP client included. To receive an IP address via DHCP just call:

udhcpc

If your board supports more than one network interface, you can add option -i to specify the
appropriate interface. For example, to request IP data for interface eth1:

udhcpc -i eth1

9.6 WLAN

Wireless LAN is available on some F&S. Configure the WLAN adapter for your needs by us-
ing the ifconfig or ip program. Use program wpa_supplicant to set up all parameters
required for WLAN access, like data encryption and login information.

The data for known WLAN connections is kept in the file /etc/wpa_supplicant.conf. If
the root filesystem, is in read-write-mode, you can append the access information for a new
network to this file. For example, if the SSID of the network is My WLAN and the passphrase
is My secret access code, then you can issue:

wpa_passphrase "My WLAN" >> /etc/wpa_supplicant.conf

My secret access code

From now on, wpa_supplicant will automatically connect to this network if it is in range.

Start the wpa_supplicant:

Azurewave wlan chip

wpa_supplicant -B -D nl80211 -i mlan0 -c /etc/wpa_supplicant.conf

Silex wlan chip

wpa_supplicant -B -D nl80211 -i wlan0 -c /etc/wpa_supplicant.conf

wpa_supplicant stays active in the background and handles all WLAN tasks. For exam-
ple, it scans all WLAN networks in range and checks if a known network is among them. Af-
ter a few seconds, the WLAN connection should be established. Then you can start the net-
work similar to an Ethernet interface, for example with:

Azurewave wlan chip

udhcpc -i mlan0

Silex wlan chip

udhcpc -i wlan0

There is a special program called wpa_cli that can talk to the running wpa_supplicant
process. A single command can be given as argument to wpa_cli. For example, to show
the list of currently available WLANs, call:

Linux on F&S Boards 127

Using the Standard System and Devices

wpa_cli scan_results

Calling wpa_cli without arguments will go to interactive mode. Now you can enter
wpa_supplicant commands directly, without having to type wpa_cli before each line.

The list of wpa_supplicant commands, that you can show by entering help, is rather
long, way too much to handle it here. When you are done, type quit to leave interactive
mode again.

9.7 Qt support

Qt is a cross-platform application framework that is widely used for developing applications
mostly with a graphical user interface.

Buildroot

F&S provides a qt*_defconfig

Yocto

F&S provides a fus-image-qt* recipe.

9.8 Video Processing (gstreamer support)

Modules based on fsimx6 support hardware accelerated video processing in gstreamer.
Table 25 holds a list of all i.MX6 specific gstreamer1 plugins that use hardware accelera-
tion.

Plugin name Description

imxv4l2src Video4Linux source (e.g. camera)

aiurdemux VPU-based demultiplexer

vpudec VPU-based video decoder

vpuenc_jpeg VPU-based JPEG encoder

vpuenc_h263 VPU-based H.263 video encoder

vpuenc_h264 VPU-based H.264 video encoder

vpuenc_mpeg4 VPU-based MPEG4 video encoder

imxv4l2sink Video4Linux video sink

imxeglvivsink GPU based video sink

beepdec Audio decoder

imxvideoconvert_g2d G2D-based video converter

imxvideoconvert_ipu IPU-based video converter

128 Linux on F&S Boards

Using the Standard System and Devices

Table 25: VPU based GStreamer plugins

Modules based on fsimx8mp support hardware accelerated video processing in gstreamer.
The following table holds a list of all iMX8MP specific gstreamer1 plugins that use hardware
acceleration.

Plugin name Description

v4l2src Video4Linux source (e.g. camera)

aiurdemux Multi-format demultiplexer for several video formats

imxvideoconvert_g2d IMX g2d video converter (pixel format, rotation)

imxcompositor_g2d IMX g2d video compositor (combine several videos, add
background)

v4l2sink Video4Linux video sink (overlay support)

waylandsink Wayland video sink

beepdec Audio decoder for several audio formats

vpu_enc_h264 IMX VPU-based AVC/H264 video encoder

vpuenc_vp8 IMX VPU-based VP8 video encoder

vpudec IMX VPU-based video decoder

To play an AVI (h264 encoded) file for example the following command can be used for play-
back

gst-launch-1.0 filesrc location=video.avi typefind=true
 ! aiurdemux ! vpudec ! imxv4l2sink

Please note that the Video4Linux video sink (imxv4l2sink) will show the video content in
an overlay framebuffer.

Of course, also a lot of regular gstreamer plugins are availabe. The following command will
show all available plugins and supported video and audio formats. The output is rather
lengthy.

gst-inspect-1.0

To get more information about a specific item, just add it after the command. For example to
get information about the v4l2sink, enter:

gst-inspect-1.0 v4l2sink

Check if the video path is working:

gst-launch-1.0 videotestsrc ! fbdevsink

Linux on F&S Boards 129

Using the Standard System and Devices

This command renders a kind of test image directly into the framebuffer. Use v4l2sink to
render into a screen overlay. You can modify the test image by adding pattern=<n> to
videotestsrc, where <n> is a number of 0 to 24. For example …

gst-launch-1.0 videotestsrc pattern=18 ! fbdevsink

… will show a moving ball on the screen.

Check if the audio path is working:

gst-launch-1.0 audiotestsrc ! alsasink

This will output a tone made of a sine curve. You can modify the output by adding wave=<n>
to audiotestsrc, where <n> is a number of 0 to 12. This will use a different curve or use
noise instead. For example …

gst-launch-1.0 audiotestsrc wave=9 ! alsasink

… will output White Gaussian Noise.

The easiest way to play a video or audio file is by using the playbin filter.

gst-launch-1.0 playbin uri=<name>

You have to give the file name in URI-style, i.e. prepend file: and use the absolute path.
For example, if you are working as user root, who has his home directory in /root, and
you have an MPEG-2 video called video.mpg there, then call:

gst-launch-1.0 playbin uri=file:/root/video.mpg

playbin will automatically select a suitable set of filters and plugins to play the file.

Please note that most video sinks do not accept interlaced videos. If your video is in inter-
laced format, you have to add a flag to tell playbin to deinterlace the video when playing. The
flags value is a combination of several flags. The default value is 0x17, the flag for deinterlac-
ing is 0x200. This is the final command:

gst-launch-1.0 playbin uri=file:/root/video.mpg flags=0x217

You can also give your own list of filters, which is slightly more complicated. For example to
just play the video part video.mpg this would be:

gst-launch-1.0 filesrc location=video.mpg ! mpegpsdemux \
 ! mpegvideoparse ! mpeg2dec ! deinterlace ! videoconvert \
 ! fbdevsink

To play an audio file sound.wav:

gst-launch-1.0 filesrc location=sound.wav ! wavparse ! Alsasink

9.9 I2C

Most devices on an I²C bus are accessed by a device driver in Linux. But you can also have
access to additional devices from userspace software. There are even command line tools to
do this.

130 Linux on F&S Boards

Using the Standard System and Devices

Show the available I²C buses:

i2cdetect -l

i2c-3 i2c 30a50000.i2c I2C
adapter

i2c-1 i2c 30a30000.i2c I2C
adapter

i2c-2 i2c 30a40000.i2c I2C
adapter

i2c-0 i2c 30a20000.i2c I2C
adapter

Show the available devices on bus i2c-0:

i2cdetect -y 0

 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- –
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- –
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- –
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- –
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- –
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- –
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- –
70: -- -- -- -- -- -- -- –

So, there are no devices on i2c-0. Some devices are handled by a Linux driver, so they
cannot be accessed from user space (therefore marked as “used” with UU). Now you can
read and write data with i2cget and i2cset or read whole data areas with i2cdump.

9.10 SPI

SPI devices are often directly accessed by device drivers from the kernel. However, an SPI
device can also be made available to user space via the usermode SPI driver called spi-
dev. Such devices are available as /dev/spidev<n>.<m>, where <n> is the SPI bus num-
ber and <m> is the chip select number on this bus.

With spi-config, you can get information about the settings of your SPI device, and you
can also change them.

spi-config -q -d /dev/spidev1.0

/dev/spidev1.0: mode=0, lsb=0, bits=8, speed=20000000, spiready=0

Set the device to use 8 MHz and SPI mode 3:

spi-config -m 3 -s 8000000 -d /dev/spidev1.0

Linux on F&S Boards 131

Using the Standard System and Devices

Remark

The speed is only kept as long as the file is open. So, if you query the device again after the
above command, it will still show speed=20000000. So, you have to keep the spi-config
command running to see the change. For example:

spi-config -m 3 -s 8000000 -w -d /dev/spidev0.0 &

spi-config -q -d /dev/spidev1.0

/dev/spidev1.0: mode=3, lsb=0, bits=8, speed=8000000, spiready=0

fg

<Ctrl-C>

spi-config -q -d /dev/spidev1.0

/dev/spidev1.0: mode=3, lsb=0, bits=8, speed=20000000, spiready=0

Option -w in the first command keeps the command running, but the ampersand & sends it to
the background. When you now issue the query command in the foreground, you can see
the change to 8 MHz. After pulling the first command back to the foreground and stopping it
with Ctrl-C, the speed is also back at 20 MHz.

The spi-pipe command is used to send data (from stdin) to the device and at the same
time receive data from the device (to stdout). So as the name implies, it is intended to be
used as part of a command pipeline

<command generating data> | spi-pipe | <command consuming data>

Or you can use I/O redirection to get the data to send from one file and store the received
data in a second file. The following command will send 10 bytes of data from file data.send
as 2 packages of 5 bytes to the device. The received data, also 10 bytes, will be stored in file
data.received.

spi-pipe -b 5 -n 2 < data.send > data.received

SD Card

Besides the size (regular SD and Micro SD) there are also two types of SD card slots: slots
with and without a Card Detect (CD) signal. Slots without a CD pin can only be used for non-
removable media. So the card is detected only if it is present at boot time. If it is inserted
later, it is not detected anymore. Slots with a CD pin are meant for removable media. They
can detect at runtime when a card is inserted or ejected.

If an SD card is detected in the system, a device /dev/mmcblk0 is created. This device rep-
resents the whole card content. If the device also holds a partition, an additional device /
dev/mmcblk0p1 is created. This device represents this single partition only.

You can mount and unmount the card now. For example to mount the card on directory /
mnt, you have to issue the following command:

mount /dev/mmcblk0p1 /mnt
ls /mnt

Now you can work with the device. Later, when you are done, you can unmount it again with

132 Linux on F&S Boards

Using the Standard System and Devices

umount /mnt

9.11 USB Stick (Storage)

If a USB memory stick is inserted, it is available like a standard hard disk. Because there is
usually no real hard disk connected, it is found as /dev/sda. If you have partitions on your
USB stick, you have to access them as /dev/sda1, /dev/sda2 and so on.

You can mount and unmount all the partitions now. For example to mount the first partition on
directory /mnt, you have to issue the following command:

mount /dev/sda1 /mnt

To unmount again, issue:

umount /mnt

Remarks

If a USB storage device contains more than one partition, a device entry will be created for
each partition, for example also /dev/sda2 and /dev/sda3. In fact also a device entry /
dev/sda without a number is available, that refers to the whole device, including all parti-
tions. Some USB storage devices do not contain a partition table at all. Then only /dev/
sda is created.

If more than one storage device is plugged in (for example via a USB hub), then the sec-
ond device has the base name sdb, the third sdc, and so on.

9.12 RTC

Setting date:

date "2015-04-22 22:55"

Save current date to RTC:

hwclock -w

The time will automatically be loaded from the RTC at the next boot.

Note:

Make sure VBAT is connected to the module. Otherwise the RTC can not keep time.

9.13 GPIO

Sysfs

Linux on F&S Boards 133

Using the Standard System and Devices

Note:

Deprecated since Linux kernel 5.15

You can setup and use GPIOs with the Sysfs system.

ls /sys/class/gpio
export gpiochip128 gpiochip64 unexport
gpiochip0 gpiochip32 gpiochip96

Please refer the according “GPIO Reference Card“ document to know how the pins of the
board correspond with the Sysfs-GPIO system.

Example:

Configure for example function pin COL0 (armStoneA9: J12 / PTD2) as output pin. The pin
number on J12 is 3. The “GPIO Reference Card” shows in row /sys/class/gpio/gpio#
the number 147. To get this pin into sysfs write:

echo 147 > /sys/class/gpio/export

This creates a new directory gpio147 in /sys/class/gpio that is used for all further set-
tings of this GPIO.

ls /sys/class/gpio/gpio147/
active_low direction edge power subsystem
uevent value

Set pin as output:

echo out > /sys/class/gpio/gpio147/direction

Set pin to high level:

echo 1 > /sys/class/gpio/gpio147/value

Now the pin should have a high level (about 3.3V) which you can measure with a voltmeter.
To set pin low again type:

echo 0 > /sys/class/gpio/gpio147/value

Now pin has a low level. To set a pin as input, write in into direction. Then you can read
the current value with

cat /sys/class/gpio/gpio147/value

libgpio-tools

Note:

Available starting Linux kernel 5.15

To list all available GPIO chips run

gpiodetect
gpiochip0 - 32 lines:

134 Linux on F&S Boards

Using the Standard System and Devices

line 0: unnamed unused input active-high
line 1: unnamed "fts_reset_gpio" output active-high [used]
…
gpiochip1 - 32 lines:

line 0: unnamed unused input active-high
line 1: unnamed unused input active-high

…

You can name each GPIO by adding the “gpio-line-names” entry to the respective GPIO node in
your Linux device tree. Please note that you always have to set the name for each GPIO of a chip.

&gpio1 {

gpio-line-names =
 "GPIO_0","GPIO_1","GPIO_2","GPIO_3","GPIO_4","GPIO_5",
 "GPIO_6","GPIO_7","GPIO_8","GPIO_9","GPIO_J2_65","GPIO_11",

…
};

Example

On PicoCoreMX8MP, use pin GPIO_1_54 on feature connector as output pin. This is pin 54
on the PicoCoreBBDSI connector J1, also available on pin 8 of the feature connector J11 on
the PicoCoreBBDSI SKIT. The “GPIO Reference Card” for PicoCoreMX8MP in the row GPIO
the GPIO1_IO1 which means that this GPIO is on gpiochip1 the IO number 1. If you have
named your GPIO, you can also get this information by running

gpiofind <gpio_name>

To set the GPIO pin to high level run :

gpioset -m signal gpiochip1 1=1

Now the pin should have a high level (about 3.3V) which you can measure with a voltmeter.
To end the gpioset press CTRL+c.

Please note, that the GPIO is only driven as long as gpioset is activie.

To set pin low again type:

gpioset -m signal gpiochip1 1=0

Now pin has a low level.

You can read the current value with

gpioget gpiochip1 1

Linux on F&S Boards 135

Using the Standard System and Devices

9.14 Sound

You can use standard ALSA tools to play and record sound. There is a tool to test the sound
output.

speaker-test -c 2 -t wav

This will say "Front left" and "Front right" on the appropriate line out channel. If you have a
WAV file to play, you can use this command:

aplay <file.wav>

To record a file from microphone in (mono), just call

arecord -c 1 -r 8000 -f s16_le -d <duration> <file.wav>

SGTL500 Codec:

To record a file from line in, you first have to switch recording from microphone to line in. This
can be done with

amixer sset 'Capture Mux' LINE_IN

WM8960 Codec:

There are two possible ways of configuring the WM8960. One is the interactive way with
ALSA Mixer, but we’ll concentrate on the shell commands.

To configure the general sound settings

amixer -c 0 set ‘Headphone’ 100%

amixer -c 0 set ‘Speaker’ 100%

amixer -c 0 set ‘Playback’ 100%

Every speaker (e.g. left and right) has it’s own mixer. To activate them, execute

amixer -c 0 set 'Left Boost Mixer LINPUT3' unmute

amixer -c 0 set 'Left Output Mixer Boost Bypass' 100%

amixer -c 0 set 'Left Output Mixer LINPUT3' 100%

amixer -c 0 set 'Left Output Mixer PCM' unmute

amixer -c 0 set 'Right Boost Mixer RINPUT3' unmute

amixer -c 0 set 'Right Output Mixer Boost Bypass' 100%

amixer -c 0 set 'Right Output Mixer RINPUT3' 100%

amixer -c 0 set 'Right Output Mixer PCM' unmute

For the left and right channel.

To record a stereo file with high quality:

arecord -c 2 -r 48000 -f s16_le -d <duration> <file.wav>

136 Linux on F&S Boards

Using the Standard System and Devices

To see what other controls are available, call amixer without arguments:

amixer

You can also use gstreamer to test sound.

gst-launch audiotestsrc ! alsasink

And to play a WAV file with gstreamer, you can use the following command:

gst-launch filesrc location=<file.wav> ! wavparse ! alsasink

9.15 Pictures

Buildroot:

There is a small image viewer program included called fbv. Just call it with the list of images
to show. This will show a new image every ten seconds.

fbv -s 10 /usr/share/directfb-examples/*.png

To show possible program options use:

fbv –-help

If you want to use a different framebuffer, set the variable FRAMEBUFFER accordingly. For ex-
ample to use /dev/fb2, use the following command, before calling fbv.

export FRAMEBUFFER=/dev/fb2

Yocto:

Fbv is not available in Yocto. Instead, you can add the package fbida to your package

Add the following line to your conf/local.conf

CORE_IMAGE_EXTRA_INSTALL_append = “ fbida”

fbi /<PATH_TO_IMAGE>.png

To show possible program options use:

fbi –-help

fbi and fbv will write directly to the framebuffer, so you will have to make sure that no other
graphical program like Weston/Wayland is running on the same virtual terminals.

You can change the virtual terminal with the command

chvt <1..63>

Linux on F&S Boards 137

Using the Standard System and Devices

9.16 TFTP

There is a small program to download a file from a TFTP server. This can be rather useful to
get some files to the board without having to use an SD card or a USB stick. For example to
load a file song3.wav from the TFTP server with IP address 10.0.0.121, just call

tftp -g -r song3.wav 10.0.0.121

9.17 Telnet

If you want to use telnet to login from another PC, you have to start the telnet daemon

telnetd

However as this service is considered insecure, telnetd does not allow to log in as root. So
you have to add a regular user, for example called “telnet”.

adduser -D telnet
passwd -d telnet

The first commands adds the user “telnet” and the second command sets an empty pass-
word for this user.

Now you can log in from another PC with username telnet:

telnet <ipaddr>

9.18 SSH

Buildroot

You can connect to your device by SSH. But then you need to set a password for your root
user

passwd

or create a new user by:

adduser <username>

Now you can connect via SSH by any host in the network with:

ssh <username>@<device-ip>

If for some reason the keys are expired you can calculate new ones. Therefore old keys have
to be removed.

cd /etc
rm ssh_host_*
cd /etc/init.d
./S50sshd

138 Linux on F&S Boards

Using the Standard System and Devices

Be careful with rm ssh_host_*. Just remove the files with the word ssh_host_ and key in
it. After that the startup script S50sshd should be executed again

/etc/init.d/S50sshd restart

Note

Please note that date and time must be valid on the board or login attempts with ssh will
fail. The script S50sshd will only create new encryption keys if the directory /etc is writ-
able. So if your rootfs is read-only, you have to remount it as read-write first before calling
the script.

Yocto

In Yocto ssh is configured to allow root login and empty-password by default. Just connect
via SSH by any host in the network with:

ssh <username>@<device-ip>

You can change these settings at:

vi /etc/ssh/sshd_config

9.19 VNC

Note

This is only supported in native X11 environments.

If you have no display attached or you want to connect by remote you can start the pre-in -
stalled (with the standard buildroot root filesystem) x11vnc program on your device by:

x11vnc

On any host in the network install a vnc-viewer program and connect to your board with:

vncviewer <device-ip>:0

9.20 RDP

Buildroot

To use the Remote Desktop Protocol, it is necessary to configure Buildroot. First go to the
Buildroot directory and execute:

 make menuconfig

then activate the RDP Compositor located at:

Target packages – Graphic libraries and applications (graphics/
test) – weston – RDP Compositor

Then reconfigure weston with:

Linux on F&S Boards 139

Using the Standard System and Devices

make weston-reconfigure

When the process is finished, start the build process:

make

After the build has completed check if the rdp-backend.so file in

output/target/usr/lib/libweston-9

exists.

Save the rootfs on the board and boot the system. Establish a network connection between
the development machine and the board. The RDP needs a security key. For this you must
create a folder and generate a key:

cd /opt; mkdir rdp_keys

winpr-makecert -rdp -silent -path /opt/rdp_keys -n “rdp-security”

This command creates the two files:

rdp-security.crt

rdp-security.key

Now you have to start the weston service by executing:

weston --backend=rdp-backend.so --shell=desktop-shell.so --no-
clients-resize --rdp4-key=/opt/rdp_keys/rdp-security.key

The service is now up and running.

On the development machine you have to install the FreeRDP package:

sudo dnf install freerdp

To connect to the board you must start the client with:

xfreerdp /u:root /v:<BOARD-IP-ADDRESS>:3389

Yocto

First off, you must ensure that the FreeRDP package is installed on the board.

Simply add:

IMAGE_INSTALL_append = “ freerdp”

to your local.conf file located in the build directory.

Next, you must create the weston_<VERSION>.imx.bbappend file in the

140 Linux on F&S Boards

Using the Standard System and Devices

sources/meta-fus/recipes-graphics/wayland

directory. Create the folder wayland if necessary.

Add the following lines of code:

 EXTRA_OEMESON_remove = " -Dbackend-rdp=false"

 EXTRA_OEMESON_append = " -Dbackend-rdp=true"

 PACKAGECONFIG_append = " rdp"

 PACKAGECONFIG[rdp] = "-Dbackend-rdp=true, -Dbackend-rdp=false,
freerdp"

 EXTRA_OECONF_append = " --enable-rdp-compositor"

Save the file and run your build. The remaining steps to establish a connection are identical
to the buildroot release. So please follow these steps described earlier in the buildroot sec-
tion.

9.21 Bluetooth

Bluetooth is available on some modules. Buildroot and Yocto offer support for the official
Linux Bluetooth protocol stack (bluez).

Before fsimx8mm-B2023.11

Silex wlan chip

To attach the bluetooth device you must first create a hci device. Physically bluetooth device
is available on tty0:

hciattach ttymxc0 texas 38400 flow

Azurewave wlan chip

If not already done, start the Bluetooth daemon:

/usr/libexec/bluetooth/bluetoothd --compat &

After powering up the device, bluetooth is working generally.

hciconfig hci0 up

To scan for bluetooth devices you can use the hcitools.

hcitool scan

More information to bluez stack can be found at http://www.bluez.org .

After fsimx8mm-B2023.11

The hcitool is deprecated and not included in the bluez-utils package any more.

You can use the bluetoothctl command instead to bring up the bluetooth device.

Linux on F&S Boards 141

http://www.bluez.org/

Using the Standard System and Devices

If you still need the hci tools you can install the bluez-utils-compat package.

Azurewave wlan chip

If not already done, start the Bluetooth daemon:

/usr/libexec/bluetooth/bluetoothd --compat &

After powering up the device, bluetooth is working generally.

bluetoothctl power on

To scan for bluetooth devices you can use the bluetoothctl.

bluetoothctl scan on

More information to bluez stack can be found at http://www.bluez.org .

142 Linux on F&S Boards

http://www.bluez.org/

Graphical Environments

10 Graphical Environments
Linux offers a few different ways for applications to display their graphical user interface. A
display server that uses protocols like X11 or Wayland can be used. Or the application can
write directly to the frame buffer or render through EGL.

The default environment F&S uses is the X.Org Server. It is used when a root file systems is
compiled with the ‘..._std_defconfig’. This configuration is destined for X applications.

As opposed to this the ‘..._qt5_defconfig’ is destined for Qt applications. It doesn’t contain a
display server. There are several reasons for this. First the compilation of X server packages
next to Qt5 packages is not intended in Buildroot and leads to conflicts. Second the common
approach for Qt applications is to render directly through EGL. The Qt application runs in full-
screen mode mostly and all configuration is done within the Qt framework. In this case a dis-
play server is omitted because it is not needed.

The third configuration for Buildroot F&S offers is the ‘..._min_defconfig’. It is a very small
configuration. It contains almost no additional packages and no display server either. This
configuration was designed to give a starting point for customers that want to have a very
small and basic configuration they can extend. A good knowledge about configuration,
needed packages and dependencies is needed therefore. Because it is a very basic config-
uration setting up another graphical environment or changing some settings is done by ad-
justing the ‘..._std_defconfig’ ‘..._wayland_defconfig’ or ‘...qt5_defconfig’ most of the time.

Note

Releases, starting 2021 do not support X11 as graphical environment any more. Instead
Weston/Wayland is used as graphical environment here.

All chapters about X11 do not apply to these releases!

10.1 Rendering

Rendering which is vital for showing up a GUI is a complex topic. There are lot’s of tech-
niques, protocols and coherence’s that came by time. Let’s have a quick look at the evolu-
tion, current technologies and how parts are connected.

10.1.1 Weston/Wayland

Wayland is another Graphical Environment. It is meant as the successor to X11, but without
the overhead of a dedicated graphics library or a rendering server. This allows for a more effi-
cient use of graphics hardware at the cost of less flexibility in networking capabilities.

In Wayland, all applications are rendering their window contents themselves. There is no
strict rule on how to do this. They can use libraries like pixman, cairo, pango, freetype, or full
blown widget libraries like Qt or GTK+, or OpenGL/OpenGLES for 3D features and even

Vulkan in the future. By using the Direct Rendering Infrastructure (DRI), Wayland programs
can also get easy access to hardware acceleration. The result of the rendering is placed in a
bitmap in RAM.

Linux on F&S Boards 143

Graphical Environments

Then there is the so-called Compositor. The Compositor collects those parts of the bitmaps
of each application that are visible on the screen, i.e. that are not covered by other windows
and that are not off-screen, and copies them to the framebuffer. If an application updates
some part of the content within its bitmap, for example as the result of some user action, it
tells the Compositor about this and the Compositor will fetch the affected part of the applica-
tion's bitmap again and refreshes the on-screen content with it.

So rendering is done by the applications, and composing the final screen content is done by
the Compositor. And Wayland defines the protocols and data structures that are used for the
communication between client applications and Compositor. Wayland itself does neither par-
ticipate in drawing/rendering, nor is it responsible for the position and stacking of windows
(the so-called scene graph).

The Compositor is part of the specific GUI. For example Gnome has its own Compositor
called "mutter", KDE has its own Compositor named "kwin" and so on. The Compositor also
takes the role of the Window Manager, so it is also responsible for the look and feel of the
windows on the screen and the desktop in general. This is the part where the GUI systems
bring in their specific concept of interaction with the user.

Wayland has an own reference implementation of a Compositor called Weston. This Com-
positor is used in cases where the selected GUI does not provide an own Compositor, which
is the case on F&S boards.

So in fact most settings for Wayland on F&S boards are actuallydealing directly with Weston,
which is why this GUI is often called Wayland/Weston.

10.1.2 X Server technology

In former times there was mainly 2D content. An application transferred it’s content to the X
server that sent it directly to the graphic hardware. Therefore the X Server ran as root.

In the next time when OpenGL came up the GLX protocol was invented. It’s an extension of
the X protocol that transfers OpenGL commands over the X Server protocol. 3D OpenGL
content could be sent to the X Server and from there to the hardware now. Because the X
Server is always standing in the middle and an application can’t interact with the graphic
hardware directly this is called indirect rendering.

To solve that issue the Direct Rendering Infrastructure (DRI) came. OpenGL applications
could render content faster by talking to the DRI directly. The X Server still had to communic-
ate to the graphic hardware directly running as root. Framebuffer applications used the
framebuffer driver.

Today the X Server, OpenGL applications and framebuffer applications use the direct render-
ing infrastructure to access the graphic hardware. Direct Rendering is very important espe-
cially for the performance of 3D applications. 2D X applications are often still using the indir-
ect rendering because the performance is good enough. But 2D X applications can render
via OpenGL too.

10.1.3 Qt with OpenGL, EGL, EGLFS and more

Let’s explain how Qt applications renders to the screen and explain a few terms therefore.

144 Linux on F&S Boards

Graphical Environments

OpenGL is an API for rendering graphics mostly in 3D and also in 2D. It’s an open specifica-
tion. Mesa3D implements OpenGL via software rendering as well as drivers for hardware ac-
celerated rendering for some graphic cards. The imx-vivante driver is not included in
Mesa3D. It’s an independent driver.

OpenGL ES is a subset of OpenGL. It’s a 2D/3D rendering API for embedded systems.
OpenGL ES 2.X provides full programmable 3D graphics. The vivante graphic card on i.MX6
and i.MX6SX SOCs is able to render OpenGL ES commands. Vivante provides (mostly
closed source) libraries that implement the OpenGL ES API and communicate to the graphic
hardware. In buildroot menuconfig you can activate some GPU examples in Target Packages
→ Hardware handling → Freescale i.MX libraries → imx-gpu-viv.

EGL is an API between a Khronos rendering API e.g OpenGL ES and a window system e.g.
Wayland or the graphical environment of Android. EGL can handle multiple 2D and 3D ren-
dering contexts. It manages buffers, synchronization and more. The EGL API does not con-
tain platform-specifics. Usually the window manager keeps an eye on that. However a single
Qt application may want to run without a window manager.

Therefore Qt provides EGLFS and so called EGL device integration plugins (e.g. linuxfb)
that are loaded dynamically. Both solutions provide surfaces to draw to. In addition EGLFS
can provide software-rendered windows similar to a window manager. The Qt documentation
recommends EGLFS as “the recommended plugin for modern Embedded Linux devices that
include a GPU” and prefer it over EGL device integration plugins.

10.2 Weston/Wayland Configuration

10.2.1 General behaviour

Weston/Wayland is compiled using the ‘..._wayland_defconfig with Buildroot or DISTRO=fus-
imx-wayland in Yocto.

On start it shows a simple panel at the top of the screen, containing a clock on the right and
an icon to open terminals on the left.

Weston is started automatically by default. If you have to start it manually call

weston --tty 7

The central file to configure Weston is located at

/etc/xdg/weston/weston.ini

The weston.ini file is composed of a number of sections which may be present in any order,
or omitted to use default configuration values.

Rotate Display

To rotate the display 90 degrees clockwise, add the following lines to the [output] section:

[output]

Linux on F&S Boards 145

Graphical Environments

name=[output name] # fbev for imx6; DSI-1 for imx81

transform=rotate-[degree] # can be 90/180/270

Fullscreen

To remove the toolbar and start all applications in full-screen you can use the kiosk-shell

[core]

shell=kiosk-shell.so

Alternately you can remove the toolbar by adding the following lines

[shell]

panel-position=none

Applications then will get started in windows unless they request full screen.

10.2.2 Weston touch calibration

You can connect a 4-wire resistive touch or a capacitive touch to your device. When starting
Linux for the first time you need to calibrate your touch with command

weston-touch-calibrator -v /dev/fb0

This will show a crosshair on the display in the top left corner. After you have touched it with
your finger, the crosshair will move to the top right corner. Continue to touch these marks un-
til all four corners are done. Now the touch is calibrated. The program will print a set of calib-
ration data before exiting.

However this calibration is lost if you restart the board. To make the changes permanent, you
have to add this to a udev rules file.

Create a new .rules file at /etc/udev/rules.d/ and add your calibration matrix values to it:

vi /etc/udev/rules.d/touchscreen.rules

ENV{LIBINPUT_CALIBRATION_MATRIX}="x.xxx x.xxx x.xxx x.xxx x.xxx x.xxx"

You may have to remove existing touchscreen rules.

Note

If weston-touch-calibrator is not installed to your Image in Yocto you can add the following
line to you conf/local.conf and restart the build:
IMAGE_INSTALL_append = " weston-examples"

10.2.3 Xwayland

It’s still possible to run many X-applications on Wayland using the Xwayland server.
Xwayland is a stand-alone Xserver without graphic-specific drivers. It sends the im-

1This may change regarding your display type

146 Linux on F&S Boards

Graphical Environments

age data directly to Weston, which outputs it to the screen using hardware accelera-
tion.

However, 3D-accelerated X11 applications are not supported on Xwayland. The nat-
ive Wayland backend has to be used here.

Xwayland can be build by using the ..._xwayland_defconfig with Buildroot or DIS-
TRO=fus-imx-xwayland in Yocto.

You can test you Xwayland installation by running

xterm

10.3 X.Org Server Configuration

10.3.1 General behaviour

The default GUI compiled with ‘..._std_defconfig’ just shows a rudimentary X-Window
desktop under a Matchbox window manager. You can start a terminal program and a system
load monitor from the starter menu. You can also click on the desktop icons and open them,
but there are no further X applications installed. You can connect a USB mouse or USB key-
board (e.g. by using a USB hub) and move the mouse cursor or type commands to the ter-
minal window.

The whole system is very simple and just demonstrates how a GUI could be implemented.
We don't want to get a too large default root filesystem.

The X11 window manager is started automatically by default. If you have to start it manually
call

startx

You can start some X applications on the command line e.g.:

export DISPLAY=:0
xclock &
xeyes &
xcalc &

In matchbox all applications are shown fullscreen. Matchbox does not support tiled or over-
lapped windows. You can switch between running applications by clicking on the top left
drop-down menu.

The X server is started with script file /etc/init.d/S35x11. So if you don't want this GUI started
at every boot, just rename this script to something that does not start with S and two digits.
For example rename it to X35x11. Then you can rename it back any time you want

10.3.2 GPU support

To use the hardware accelerated graphics driver make sure that the following configuration
lines are available in the xorg.conf file:

Linux on F&S Boards 147

Graphical Environments

Section "Device"
 Identifier "i.MX Accelerated Framebuffer Device"
 Driver "vivante"
 Option "fbdev" "/dev/fb0"
 Option "vivante_fbdev" "/dev/fb0"
 Option "HWcursor" "false"
EndSection

Listing 2: Hardware accelaration configuration in xorg.conf

10.3.3 X.Org Server touch calibration

You can connect a 4-wire resistive touch or a capacitive touch to your device. When starting
Linux for the first time you need to calibrate your touch with command

xinput_calibrator

This will show a crosshair on the display in the top left corner. After you have touched it with
your finger, the crosshair will move to the top right corner. Continue to touch these marks un-
til all four corners are done. Now the touch is calibrated. The program will print a set of calib-
ration data before exiting.

However this calibration is lost if you restart the board. To make the changes permanent, you
have to add this to the xorg.conf file. This can be done by creating a sub directory /etc/
X11/xorg.conf.d and adding a file 99-calibration.conf that contains the calibration
data that was reported by xinput_calibrator.

10.4 Qt Environment

If you use a Qt based root file system nothing will be shown on the display until you start a Qt
application. Qt can be compiled with the linuxfb device integration plugin that simply writes to
the framebuffer or with the recommended EGLFS variant. The first one is used by
fsimxul_qt5_defconfig because i.MX6UltraLite doesn’t have a 3D graphic engine. The latter
one is used by ‘..._qt5_defconfig’ of i.MX6 and i.MX6Solo X. If you have compiled a root file
system containing both you can switch between them using the QT_QPA_PLATFORM argu-
ment. To start the gradients example using the framebuffer type:

QT_QPA_PLATFORM=linuxfb:fb=/dev/fb0 ./gradients

To start the gradients example using eglfs you can type:

QT_QPA_PLATFORM=eglfs ./gradients

Omitting the argument using EGLFS will be tried as default platform. This will not work for
i.MX6UltraLite.

./gradients
The argument can also be set as environment variable:

export QT_QPA_PLATFORM=linuxfb:fb=/dev/fb0

Or it can be given as argument to the application:

148 Linux on F&S Boards

Graphical Environments

./gradients -platform linuxfb

The environment variable will prefered over the application argument.

10.4.1 Qt touch configuration

You can connect a 4-wire resistive touch or a capacitive touch to your device. EVDEV is used
for calibration. Because EGLFS knows platform-specifics like screen resolution it needs no
calibration in most cases. The linuxfb platform plugin needs more attention.

Use the following argument on application start to rotate the touch orientation:

QT_QPA_EVDEV_TOUCHSCREEN_PARAMETERS="rotate=180" ./gradients

It is also possible to invert the x or y coordinates with the argument ‘invertx’ or ‘inverty’. Argu-
ments can be chained using a colon as separator:

QT_QPA_EVDEV_TOUCHSCREEN_PARAMETERS="rotate=180:inverty" ./gradients

If you want to specify the input device the evdev touch handler should use supply the path
like this:

QT_QPA_EVDEV_TOUCHSCREEN_PARAMETERS="/dev/input/event1" ./gradients

If no path is given, Qt tries to find the device by walking through the available nodes.

10.4.2 Running Qt5 Example

There are several Qt examples shipped with Qt that you can use to test your Qt environment
and get a feel about functionality and behavior. For example the gradients example used in
previous statements is located here:

/usr/lib/qt/examples/widgets/painting/gradients/
Sometimes an application has incorrect screen or window geometry settings and is not dis-
played in full screen. In those cases you need to adjust the height and width of the appliation.
This is done with the following argument:

./gradients -qwindowgeometry 800x480

Sometimes the screen becomes dark and nothing can be seen. Most time this will happen
when the CPU is idle for an amount of time. You can activate the CPU to run with full per-
formance, so that the display will be available again.

echo "performance" > /sys/devices/system/cpu/cpu0/cpufreq/scal-
ing_governor

The following figure shows the gradients example running on a screen. If the touch is calib-
rated correctly you can change the settings on the right.

Linux on F&S Boards 149

Graphical Environments

Figure 50: Qt Example (Gradients).

150 Linux on F&S Boards

Compiling the System Software

11 Compiling the System Software
When working for the first time with the build environment, you may be a little bit confused by
all the different tools, toolchains and directories. For example you have a toolchain on the PC
that generates code for the PC. And now we will install an additional toolchain that is on your
PC that generates code for your board. This is called a cross-compile toolchain. (Theoretic-
ally it would also be possible to have a third toolchain that is on your board and generates
code for the board, but we at F&S do not support this native compilation environment as
compilation is rather slow when done on the board itself.)

All these toolchains have their own include files, their own libraries, their own configuration
files and so on. Apparently it can happen very quickly, that you are in the wrong directory or
that you use the wrong tool. But some of these commands may have very negative effects if
executed in the wrong place. For example when you want to erase some configuration file
that is meant for the etc directory on your board, but you accidentally erase the local file in /
etc on your PC instead, then this may by dangerous or even fatal. The worst case is that
you remove some larger parts and your development PC will not react to input anymore.

So we strongly recommend that you work as a normal user and not as the superuser “root”
all the time. As a normal user you are not allowed to erase such system critical files and such
commands simply won't do any harm. If you do have to enter privileged commands from time
to time, please use the sudo command that grants super user rights for the next few
minutes. And when having to type sudo in front of critical commands, then this automatically
reminds you to be careful for this step.

Please see the documentation AdvicesForLinuxOnPC_eng.pdf for a description of how
to set up sudo.

F&S supports the build environments Buildroot and Yocto to build the system software. Both
have the same basic idea. The user defines what packages (tools, libraries, applications) he
wants to include in his system by changing some configuration and then starts the build pro-
cess. Then both environments do the following steps.

● Download all required source code packages from their original web sites all over the
world

● Apply some patches so that the software can be cleanly cross-compiled

● Configure each package according to the user specification

● Compile all packages

● Create a filesystem image that can be downloaded to the board as root filesystem

However how the two environments work in detail is rather different. This is why we handle
them in two different chapters.

Important

The configurations and images that F&S provides as part of the releases are meant as ex-
amples. They typically contain a small GUI, some multimedia environment and a set of
tools to access interfaces like SPI, I²C, CAN, USB, Ethernet and WLAN.

Linux on F&S Boards 151

Compiling the System Software

However these configurations and images are not meant to be used in end products. We
may have included software packages and audio/video codecs that need a license to be
used. We most probably have included packages that you’ll never need. There will be
packages missing that you do need. And there is no security whatsoever. A system where
the root user can log in without a password is definitely not secure.

F&S declines all responsibility for problems and damages resulting from the use of these
configurations and images.

So we strongly recommend that you set up your own configuration with only those pack-
ages that you really need. You can use our minimal configuration as a starting point. Then
add all packages that you need. And finally add packages for the security, like user man-
agement, firewall, SE Linux or similar.

11.1 Buildroot

11.1.1 Install Cross-Compile Toolchain

The cross-compile toolchain is needed to compile U-Boot, the Linux Kernel and the Buildroot
package. We recommend installing it globally for all users in directory /usr/local/arm.
This is the directory that is preset in some configuration files. If you use a different directory,
you may have to modify these configuration settings before being able to build packages, for
example in Buildroot.

The global installation needs superuser rights, so we need to use sudo. First create the dir-
ectory and unpack the file from the toolchain subdirectory.

sudo mkdir -p /usr/local/arm
sudo tar xvf fs-toolchain-8.3-armv7ahf.tar.bz2 -C /usr/local/arm

Now add this directory to your global PATH variable and set environment variables ARCH and
CROSS_COMPILE for compiling the Linux kernel:

export PATH=$PATH:/usr/local/arm/fs-toolchain-8.3-armv7ahf/bin
export ARCH=arm
export CROSS_COMPILE=arm-linux-

Note

You probably have to edit some global or local bash profile to make these two environ-
ment changes permanent, for example /etc/profile or ~/.bashrc.

11.1.2 Installing the mkimage Tool

The mkimage tool is used if the kernel should be compiled as uImage, as we did in the past.
Additionally it is used to compile a U-Boot script. Copy the mkimage tool from the tool-
chain subdirectory to /usr/local/bin.

cp mkimage /usr/local/bin/

152 Linux on F&S Boards

Compiling the System Software

Check if /usr/local/bin is present in your PATH variable:

echo $PATH

If it is not there you have to extend your PATH variable:

PATH=$PATH:/usr/local/bin

This ensures temporarily that means for the current user in the current shell that the binary is
found when calling mkimage.

Note

You probably have to edit some global or local bash profile to make this change perman-
ent, for example /etc/profile or ~/.bashrc.

11.1.3 Unpacking the Source Code

The source code packages are located in the sources subdirectory of the release archive.
We will assume that you want to create a separate build directory where you extract the
source code and build all the software. The easiest way is to extract U-Boot, Linux kernel,
Buildroot and Examples next to each other, so that the top directories of their source trees
are siblings.

We have prepared a shell script called setup-buildroot that does this installation auto-
matically. Just call it when you are in the top directory of the release and give the name of the
build directory as argument.

cd <release-dir>
./setup-buildroot <build-dir>

Add option --dry-run if you want to check first what this command will do. Then only a list
of actions will be output but no actual changes will take place. For further information simply
call

./setup-buildroot --help

Note

In earlier releases, this script was called install-sources.sh. We have renamed the
script to be more consistent to Yocto where a similar script is called setup-yocto.

If you prefer to do the installation by hand, well, the script more or less executes the following
commands, just with some more checks and directory switching.

mkdir <build-dir>
tar xf u-boot-2018.03-<arch>-<v>.tar.bz2
tar xf linux-4.9.88-<arch>-<v>.tar.bz2
tar xf buildroot-2019.05.1-<arch>-<v>.tar.bz2
tar xf examples-fus-<v>.tar.bz2
ln -s linux-4.9.88-<arch>-<v> linux-fsimx6

Linux on F&S Boards 153

Compiling the System Software

The symbolic link in the final command is required by Buildroot. It provides a constant name
reference to the kernel source tree from the point of view of Buildroot, no matter how you ac-
tually call this directory. So for example if you want to use a different version of the kernel
with a different directory name, just change the symbolic link to point to your other directory
and Buildroot will automatically work with this version without having to change the Buildroot
configuration.

11.1.4 Compiling U-Boot

Starting B2021 releases the U-boot is built as part of the Buildroot build process.
(See11.1.6 Compiling Buildroot, Uboot and Linux Kernel)

You can still build U-boot this way, but t is not necessary any more.

In your build directory, simply go to the U-Boot source directory, run a configuration com-
mand to tell U-Boot to compile for the <arch> architecture, and then start the build process.
This can be done with the following three commands.

cd u-boot-2018.03-<arch>-<v>
make <arch>_defconfig
make

For devices with eMMC only another config must be set.

cd u-boot-2018.03-<arch>-<v>
make <arch>_mmc_defconfig
make

This will build the file uboot.nb0, that can be downloaded to your board, either in NBoot or
the currently installed U-Boot. The file is padded to exactly 512 KB in size (524288 bytes).
The build process will also create a slightly smaller uboot.fs. This file will only work for
serial download in NBoot, but then download is slightly faster due to the smaller size.

11.1.5 Compiling the Linux Kernel

Usually you would build the Linux Kernel as part of the Buildroot build process (see next
chapter). Then automatically all kernel driver modules will be included in your root filesystem.
However sometimes you may want to compile the kernel separately from Buildroot. Then the
sequence is as follows.

Go to the Linux source directory and run a configuration command to tell Linux to build for
the <arch> architecture. Please verify that you have set environment variable ARCH to the
value arm and environment variable CROSS_COMPILE to the value arm-linux- or the
make tool will search the wrong directory for the default configuration. Finally start the build
process.

cd linux-4.9.88-<arch>-<v>
make <arch>_defconfig
make zImage

154 Linux on F&S Boards

Compiling the System Software

The final kernel image can be found in arch/arm/boot/zImage.

If you want to modify some kernel settings you can call

make menuconfig

and then recompile the kernel with

make zImage

To build the device tree, use the device tree name as target for make. In the F&S environ-
ment for i.MX6, this name is built by the board name, the abbreviation for the CPU type (dl
for Solo/DualLite, q for Dual/Quad) and finally filename extension .dtb, all in lowercase. For
example to build the efusA9 device tree for Solo or DualLite CPU, call

make efusa9dl.dtb

The resulting file can be found in arch/arm/boot/dts/efusa9dl.dtb.

If you are not sure, what is the right name for the device tree, check variable platform in U-
Boot. The result (appended by .dtb) can be used to identify the device tree.

printenv platform

In the sdcard subdirectory there are prebuilt .dtb files where you can have a look how the
naming pattern works.

11.1.6 Compiling Buildroot, Uboot and Linux Kernel

Buildroot allows the creation of arbitrary root fileystems. In a menu based configuration sys-
tem you can select which packets you want to include in the image. Buildroot knows all the
dependencies between the packages and will automatically add all necessary libraries.
When you start the build process, Buildroot will perform the following steps.

● Download the selected source code packages from the original web sites all over the
world

● Apply some patches to make compilation go smoothly when cross-compiling

● Build all selected packages

● Combine all binaries in a root filesystem image that you can download to the board

So basically the task for creating a root filesystem for your application is to select which
packages you need, add your own application and let Buildroot build and combine everything
into the filesystem image.

We have added two different <arch> configurations to Buildroot. A minimal one that just in-
cludes Busybox and the GLIBC library. And a standard image that includes gstreamer for
multi-media, ALSA for sound support and a small X-Server with the matchbox window man-
ager and a handful of X applications. This is the version that is also included in our Starterkits
and it is a good starting point for exploring the device and its capabilities.

Again simply go to the Buildroot directory, issue a configuration command to tell Buildroot to
build for the <arch> architecure, and then start the build process. The following commands
will build the standard <arch> configuration.

Linux on F&S Boards 155

Compiling the System Software

cd buildroot-2019.05.1-<arch>-<v>
make <arch>_std_defconfig
make

Please note that Buildroot needs network access to be able to download all the packages. It
will save them in a download directory. This is usually the dl folder in the Buildroot directory,
but you can change this by setting Linux environment variable BR2_DL_DIR to point to a dif-
ferent directory. Unless you delete this directory, Buildroot will keep the downloaded files
there and will only do additional downloads if you add more packages to the root filesystem.

Note

If Buildroot fails to find a package for some reason, you can search the internet for it and
download it manually from another site. Then store it in the dl directory and resume the
build process with make. If F&S knows that a file is not available, we sometimes also add
the file directly to our release in the dl directory.

Compiling Buildroot the first time may take quite a while, probably more than an hour even
on a very fast computer, so don't be surprised. If you add the graphic environment QT to it, it
can easily be two hours or more. But later when only minor modifications need to be re-done,
an “updating” compilation is usually done in a few minutes or even seconds.

The whole build process takes place in the directory output/build. Buildroot will also com-
pile some utilities for the host PC needed for the build process. These files will be installed in
output/host. Also the libraries that are built as intermediate steps are stored somewhere
in the output directory. Buildroot actually also copies parts of the toolchain to this directory
and builds some wrappers around them so that the toolchain will use the newly created lib-
raries from Buildroot and not the globally installed libraries.

The final result are the root filesystem images in the sub-directory output/images. The de-
fault configuration will build two different images. A file called rootfs.ubifs that holds a
UBIFS based filesystem meant to be stored in NAND flash on the board. And a file called
rootfs.ext4 that can be used on SD cards or that can be mounted locally on the PC to be
exported to the board via NFS.

Buildroot actually also builds the Linux kernel that should be used on the board. The reason
for this is simple. Usually the kernel not only consists of the kernel image. But there are addi-
tional files: Kernel driver modules, firmware files, and Device Tree Binaries. If the kernel is
compiled separately as described in Chapter 11.1.5, you are responsible yourself for bringing
all these additional files to the board or into the root filesystem image. But if the kernel com-
pilation is done as part of Buildroot, then Buildroot can take care of that and will automatically
add all these modules and files to the root filesystem image. The kernel image is called out-
put/images/zImage. The device tree is also available in this directory.

Starting with the B2021 releases, the U-Boot will also get built by Buildroot. The process is
similar to the Linux kernel and the output can be found at output/images/uboot.*.

If you want to add or remove packages, or if you just want to change some settings, call

make menuconfig

156 Linux on F&S Boards

Compiling the System Software

Then do your modifications, exit menuconfig by saving the new configuration and then re-
build by calling

make

again. One of the settings is the path for the toolchain. If you have installed the toolchain un-
der /usr/local/arm as recommended, everything will work right out of the box. But if you
installed the toolchain at a different place, you have to modify the setting in Toolchain →
Toolchain Path.

Adding packages is usually straightforward. Just select the package in menuconfig, exit me-
nuconfig by saving the config file, rebuild the root filesystem, done! However removing pack-
ages is slightly more complicated. Buildroot assembles all files that should go to the target
board in output/target. This is the base for packing the root filesystem image later. But it
does not keep track of what files of this output/target directory are installed by which
package. If a package is added, the package itself will install any new files in this directory. If
a package is recompiled, the package itself will re-install these files in this directory and the
new files will simply overwrite the old ones. But what files should be deleted if a package is
removed? Packages usually do not have an uninstall step in their build process. So Buildroot
simply does not know this. And its solution is rather simple: it just leaves all files in output/
target and never removes anything. So don't be surprised if you deselect some packages
in menuconfig, rebuild everything and the root filesystem does not shrink in size at all. The
reason is that all the old binary files are still there.

For that it actually makes sense to do a clean rebuild from time to time. Then the whole out-
put directory including output/target is deleted and all packages are rebuilt from
scratch. Because deselected packages are not built again then, the new filesystem image
will reflect the new situation and will be considerably smaller.

make clean
make

Especially if you have finished your development, you should do a clean rebuild for your final
root filesystem that will go into the field to get a minimal and optimized filesystem suited for
your needs.

Some Notes About The Kernel Build Process in Buildroot

The kernel compilation process works a little bit different compared to all other Buildroot
packages. Usually the source code of a package is downloaded from somewhere, extracted,
patched, configured, compiled and added to the root filesystem. But the Linux build process
for <arch> will not download a package. Instead it will use the Linux source directory next to
the Buildroot directory that was unpacked in Chapter 11.1.3 on page 153. This is done by us-
ing rsync. Rsync replaces the variant with links that was used in older versions. The advant-
age not to use a regular package for the kernel is that modifications will still be available after
a make clean. On a regular package changes made to the extracted version of a pack-
age will get lost after a make clean. For permanent changes patch files are used of course
but obviously that is not practical for developing.

The first time rsync synchronizes kernel code to Buildroot will take about three minutes. If
this is done once in the next time synchronizing will be faster of course.

Linux on F&S Boards 157

Compiling the System Software

11.2 Yocto

Yocto is a system to build a Linux distribution. So it is not a Linux distribution by itself, but it
will help building a Linux distribution. This includes the toolchains, the bootloader, the kernel,
the root filesystems and Yocto can even build a package repository where the end user can
install additional packages from.

Yocto is organized in layers. Layers may exist next to each other, but usually they have a
hierarchical order, where the next layer is based on the previous layer. The F&S Yocto re-
lease is actually only the NXP/Freescale Release BSP, where an additional F&S layer is ad-
ded on top to provide support for the boards and modules from F&S. The NXP/Freescale Re-
lease BSP itself is based on the regular Yocto release and simply adds some NXP/Freescale
layers, to support the NXP CPUs and Evaluation Boards. Yocto itself is again based on Open
Embedded, and adds some additional Yocto specific software layers, called "Poky".

So at the core, Yocto is an Open Embedded based system. Open Embedded uses recipes,
like they are used when baking a cake. The recipe describes what you need as ingredients,
and then it tells step by step what tasks have to be done to produce the final cake. So a re-
cipe in Yocto also names the ingredients (source packages, patch files, configuration set-
tings, etc.) and then tells step by step what tasks have to be done to produce the target. For
example how sources are unpacked and patched, how they are "converted" to binaries, how
tools are installed to help the build process, how different files are grouped to root filesys-
tems or other images, and so on. To add new packages or build strategies, you simply have
to add some more recipes. This makes Yocto/Open Embedded a rather powerful build sys-
tem where you can have any influence that you like.

On the other hand you actually have to write a seperate recipe even for small tasks. Even if
you just want to assemble your own set of packages to build your private root filesystem, you
need to write a recipe. There is no easy menu or GUI based package selection like for ex-
ample in Buildroot. Everything works with recipes. Of course you can build some default im-
ages, but at the moment where you want to do something different, you have to modify an
existing recipe or you have to write your own one.

So you actually have to learn how to write recipes if you want to work with Yocto. There is no
way around this. It may also be necessary to learn how configurations and layers are written,
because the most simple way to add your own application is by adding a separate layer for it,
on top of the provided Yocto eco system.

158 Linux on F&S Boards

Figure 51: Layer architecture of Yocto

OpenEmbedded Core

Yocto "Poky"

SoC Manufacturer (NXP)

Board Vendor (F&S)

Feature Pack (e.g. Qt5, Browsers)

Application (Customer)

Compiling the System Software

These recipes use an own scripting language, based on Python. And there is a program
called bitbake that can parse these recipes and execute the steps described in them. So
building a Yocto package, root filesystem or even full target image as a whole, you have to
use bitbake.

11.2.1 Installing the mkimage Tool

The mkimage tool is used if the kernel should be compiled as uImage, as we did in the past.
Additionally it is used to compile a U-Boot script. Copy the mkimage tool from the tool-
chain subdirectory to /usr/local/bin.

cp mkimage /usr/local/bin/

Check if /usr/local/bin is present in your PATH variable:

echo $PATH

If it is not there you have to extend your PATH variable:

PATH=$PATH:/usr/local/bin

Note

You probably have to edit some global or local bash profile to make this change perman-
ent, for example /etc/profile or ~/.bashrc.

11.2.2 Unpacking the Source Code

The source code packages are located in the sources subdirectory of the release archive.
We will assume that you want to create a separate build directory where you extract the
source code and build all the software.

Note

Yocto needs quite a lot of space. The standard root filesystem as provided by F&S takes
about 100GB to compile. If you also want to use a web browser like Chromium or Firefox,
it takes up to 200 GB. And if you want to have a second instance, e.g. for a second hard-
ware or a different configuration, you need twice the amount. So use a partition that has
enough free space.

We have prepared a shell script called setup-yocto that does this unpacking automatically.
Just call it when you are in the top directory of the release and give the name of the build dir-
ectory as argument.

cd <release-dir>
./setup-yocto <build-dir>

Linux on F&S Boards 159

Compiling the System Software

Add option --dry-run if you want to check first what this command will do. Then only a list
of actions will be output but no actual changes will take place. For further information simply
call

./setup-yocto --help

By the way, the script rejects to run if it would overwrite existing files or directories and asks
the user to remove these files first. If you are sure that it is OK to delete these existing files,
you can use option --force to tell the script to continue nonetheless.

This is a sample output of the script when unpacking in a directory called build, directly
within the release directory. So build will be right next to binaries, sources, doc, etc.

[fsimx6-Y1.0]$./setup-yocto build

11.2.3 Download Main Yocto

Note

This is not necessary for Yocto 4.0 releaes and later.

As already mentioned, the F&S Yocto system consists of different layers. But only the F&S
layer is actually included in the F&S Yocto release tar archive. It provides our U-Boot, Linux
kernel, machine descriptions and some Yocto modifications and enhancements to support
F&S boards. Everything else, in other words the main part of Yocto, is downloaded from the
internet.

We have added a script that downloads the main Yocto and then adds the F&S layer, that
was unpacked in the previous step, on top of it.

cd <release-dir>/yocto-X.Y-fus-<v>
./yocto-download

This will take a few minutes, depending on your internet speed.

The download is done by using a small tool called repo that is designed to handle several
GIT repositories in parallel. So the first step of the script is to download the repo tool. Then it
fetches the repo description for the NXP/Freescale Release BSP and finally lets repo down-
load all the different GIT repositories with the Yocto layers.

As a final step, the F&S layer is appended to bblayers.conf file.

11.2.4 Configure Yocto for an F&S architecture

F&S also uses architectures in Yocto, too. So you do not configure for a specific board, but
you do configure for a whole F&S architecture <arch>. The resulting code will run on all
boards that are part of this architecture. So what is called a machine in terms of Yocto, is ac-
tually our architecture.

Simply call

160 Linux on F&S Boards

Compiling the System Software

DISTRO=<distro> MACHINE=<arch> source ./fus-setup-release.sh [-b <build-dir>]
[-m <fs-mode>]

Please note that this script needs to be sourced, which means it must be run in the current
shell to be able to modify the existing environment.

NXP uses the Yocto concept of distros to differentiate between the possible display solutions.
F&S handles this in a similar way, but as we have our own layer we also use our own distro
names. However they simply replace “fsl” with “fus”. See Table 26 for a list of possible val-
ues.

<distro> Meaning

Fus-imx-x11
(Only Yocto 2.4)

Use X11 graphics

fus-imx-wayland Use Wayland graphics

fus-imx-xwayland Use Wayland with X11 support (no EGL on X11 applications)

Fus-imx-fb
(Only Yocto 2.4)

Use plain framebuffer graphics (useful for Qt, but not supported in
all fsimx8 architectures)

Table 26: Possible distros in the F&S Yocto layer

<build-dir> is the name of the directory where the given distro will be built. It is possible
to build different distros in the same Yocto environment. Then these distros will share the
meta data and they all use the same download directory, which saves disk space. Therefore
we recommend a meaningful directory name, for example one that starts with build and
holds the name of the distro and the architecture, like build-x11-<arch>. If no directory
name is given, the build direr will be named “ build-<arch>-<distro>” by default.

In Yocto the default filesystem mode is read-writeable. If you want a read-only filesystem, you
can configure your build-environment by setting the <fs-mode> parameter to “ro”. If you want
to to change the filesystem mode in an existing build-environment simply add or remove the
line

EXTRA_IMAGE_FEATURES += "read-only-rootfs "

from your <build-dir>/conf/local.conf file and rebuild your image.

The above command will automatically switch to the newly created directory and sets the en-
vironment so that everything runs smoothly. However this is only valid in the current shell.
You have to set up this environment in every newly started shell that should be used to build
this Yocto image, for example if you restart your PC. This is done by going to the Yocto top
directory and calling

source ./setup-environment <build-dir>

Linux on F&S Boards 161

Compiling the System Software

11.2.5 Build a Yocto Image

Yocto comes with a set of predefined demo images. Each image builds a more or less com-
prehensive set of libraries, tools and applications and then creates a filesystem image that
can be downloaded to the board. There are images prepared by F&S, but also images from
Freescale/NXP and of course also the basic images provided by Yocto (Poky). The images
that we have tested and that are supposed to work on our boards are listed in Table 27.

Image Meaning

core-image-minimal Just command line interface and a few command line tools

fus-image-std Standard F&S image with X11 (or Wayland) server, match-
box window manager (or Weston compositor), gstreamer,
can-utils and a few small applications

Fus-image-qt5/
fus-image-qt6

Qt5 based image
Qt6 based image

Table 27: Some Yocto images

To build one of the demo images, simply call

bitbake <image-name>

where <image-name> is one of the images listed above.

First bitbake parses all existing recipes. This may take a few minutes on the first invoca-
tion. But as bitbake builds a cache for all the recipes, this step will only take a few seconds
in subsequent calls, unless one of the recipes is changed.

Then bitbake determines what tasks have to be done to reach the desired target. A task
may be fetching a package via the internet, unpack a package, configure, compile, install a
package or similar steps. It then generates a list of all these tasks.

Finally bitbake executes this list of tasks. If you have a multi-core system, bitbake can
work in parallel. It knows the dependencies between the tasks and if possible, it already ex-
ecutes the next task(s) in parallel, up to a certain limit that can be given in the configuration.
But please keep in mind that each task itself may be a complicated build process that may
already use parallel execution, for example a make with many parallel threads. So don't
overdo the settings, because the number of parallel bitbake tasks will multiply with the
number of parallel executions within the tasks themselves.

Building such an image will download all the required source packages, patch them, config-
ure them, compile them, and assemble them in a package system and in target images. This
includes binaries for the bootloader U-Boot, the Linux kernel, the device trees, and the root
filesystem. Even the toolchain, that is used for compiling everything, is built during this pro-
cess. Therefore building a Yocto image can take quite a long time, even several hours. For
example the fus-image-std takes about three hours to build on a PC with a rather fast
quad core CPU with hyper-threading.

The resulting files can be found in subdirectory tmp/deploy/images.

162 Linux on F&S Boards

Compiling the System Software

File Meaning

uboot.nb0 U-Boot binary (suited for NBoot)

(z)Image Linux kernel image

<boardname>-*.dtb Device trees for all boards of architecture <arch>

<image-name>-<arch>.ubifs Image to be installed in NAND flash

<image-name>-<arch>.ext4 EXT3 image, e.g. to be used via NFS

<image-name>-<arch>.sysimg Image to be installed on an SD/eMMC card

Table 28: Resulting files

If execution fails at some task, bitbake finishes all the other tasks that are running in paral-
lel, but it will not start any new tasks. When all pending tasks are completed, it will stop with
an error message. bitbake logs all steps that it does in log files, one file per task. So you
can reconstruct at which step the build process failed. Then you can fix the problem and
when you call bitbake again, it will skip the tasks that it had already finished successfully
and restart at the point where it had left off.

You can also interrupt the build process by hand, by typing Ctrl-C. However bitbake will not
stop immediately. Instead like in the error case, it first finishes all running tasks and then
stops. To really stop immediately, you have to press Ctrl-C twice. In both cases you can con-
tinue by issuing the bitbake command again.

Usually you can also build additional images without having to erase the previous results.
Just call bitbake with the new image name. Again only those steps that are new for the
new image are done by bitbake.

Remark

Some images are rather large and may not fit into the NAND flash memory of your board or
module. So for example fsl-image-multimedia results in a file of about 160 MB which
does not fit into the 128 MB of the regular armStoneA9, so it can not be run from NAND
flash. Such a rootfs can only be mounted via NFS or SD card then.

An even more complex example is fsl-image-machine-test This image creates an
UBIFS image with a size of about 300 MB. But by default our UBIFS images are configured
to be at most 256 MB of size. Therefore to compile this image, you have to modify the file
sources/meta-fus/conf/distro/include/fus-common.inc to avoid an overflow of
the UBIFS rootfs. Replace the line

MKUBIFS_ARGS = "-m 2048 -e 126976 -c 2048"

with this content:

MKUBIFS_ARGS = "-m 2048 -e 126976 -c 2800"

Linux on F&S Boards 163

Compiling the System Software

11.2.6 Rebuild A Single Package

Actually the target that is given to the bitbake command is just the name of a recipe. Image
names are also just recipe names. But of course you can also execute smaller entities, for
example a smaller sub-target or even a single package. Everything that has a separate re-
cipe can be processed separately with bitbake.

Usually when a package is built, different tasks (or stages) are executed. For example
fetch, unpack, patch, configure, compile, strip, install, package, deploy. The
list may vary from package to package. For example the Linux kernel package has additional
tasks to build the kernel modules and the device tree binaries.

You can show the list of possible task of a package with the command

bitbake -c listtasks <package>

For example:

bitbake -c listtasks linux-fus

To tell bitbake just to execute one task of a recipe, you give the name of the task after option
-c. For example to just do the compile task of a package, just call

bitbake -c compile <package>

A special task that is part of nearly every recipe is the task named clean. It is used to re-
move the package that is built by this recipe from the system again. Before being able to re-
compile an already existing package, it must be removed. Therefore to rebuild a single pack-
age, you usually execute the following sequence of commands. They clean and recompile
the package and then add it again to the final target image.

bitbake -c clean <package>
bitbake -c compile <package>
bitbake <image-name>

Here are some other examples, using the linux-fus package. To call menuconfig for the
kernel, use

bitbake -c menuconfig linux-fus

The kernel is an own image. To copy the kernel to the deploy/images directory:

bitbake -c deploy linux-fus

Open a shell in the package directory where you can issue arbitrary commands:

bitbake -c devshell linux-fus

11.2.7 Add Packages to an Image

If you want to add a package to your local build (in addition to the regular
image content), you have to go to your distro directory and open the file ./
conf/local.conf. Here you can add the package by listing it in
IMAGE_INSTALL_append. Sometimes you also have to do additional steps like en-
abling a specific software license in variable LICENSE_FLAGS_WHITELIST. If the

164 Linux on F&S Boards

Compiling the System Software

software is in a separate layer, check if the layer is already in conf/bblayer-
s.conf and add the layer if it is missing.

For example to add the Chromium browser on top of fus-image-std, the following two
lines need to be present in the BBLAYERS variable in bblayers.conf. (This should be the
case if you set up the build directory with fsl-setup-release.sh like shown above.)

For example to add the Chromium browser on top of fus-image-std you have to add fol-
lowing line to local.conf

add chromium to rootfs
CORE_IMAGE_EXTRA_INSTALL += “chromium-ozone-wayland”

Please note that building this image with Chromium needs lots of memory and time.

11.2.8 Useful utilities

If you run

source ../yocto-f+s-utilities

in the top directory of Yocto, you will get the following small helper functions.

Function Meaning

list_fus_target_boards Show a list of all supported F&S boards/architectures

list_target_images Show all recipes with "image" in their name

list_all_recipes List all available recipes (list is long!)

list_target_image_packages List all the packages that are part of the target image
given as argument

Table 29: F&S helper functions for Yocto

For example to determine which packages are part of fus-image-std, call

list_target_image_packages fus-image-std

11.2.9 Further reading

There is quite a lot of documentation available at the Yocto homepage

● https://www.yoctoproject.org/documentation

● https://www.yoctoproject.org/documentation/active

In addition you can also have a look at the documentation of the NXP/Freescale Community
BSP on github:

● https://github.com/Freescale/Documentation

Linux on F&S Boards 165

Compiling the System Software

There is also a fine tool called bb that allows inspecting Yocto variables, list recipes and pro-
viders, show bitbake logs, search packages and recipes, show package contents and de-
pendency structures, edit recipes, include and bbappend files, and similar things. You can
clone it from github:

git clone https://github.com/kergoth/bb

Then read README.md for installation instructions.

166 Linux on F&S Boards

Appendix

12 Appendix

List of Figures

Figure 1: Single Board Computers..1

Figure 2: Systems on Module..1

Figure 3: Some Linux devices...4

Figure 4: Linux diversity..5

Figure 5: Mainline and manufacturer versions diverge..8

Figure 6: Mainline versions, manufacturer versions and F&S support.....................................9

Figure 7: Hardware accesses must go through the Linux kernel...9

Figure 8: F&S development environment..13

Figure 9: Serial port options for PCs without native port..15

Figure 10: Components of a Linux system..16

Figure 11: Download documents from F&S website..19

Figure 12: Register with F&S website...19

Figure 13: Unlock software with the serial number..20

Figure 14: Boot sequence...25

Figure 15: NAND flash architecture...26

Figure 16: Bit states in SLC, MLC, TLC, QLC NAND flash cells..27

Figure 17: Common MTD partition layout in NAND flash..28

Figure 18: Common F&S layout with NAND & eMMC...29

Figure 19: Default F&S layout for boards with eMMC only..30

Figure 20: NBoot boot stage...33

Figure 21: NAND flash erase command..36

Figure 22: NetDCUUSBLoader...38

Figure 23: ARM64 (ARMv8) boot process and Execution Levels..41

Figure 24: Detailed MTD partiton layout on F&S boards...47

Figure 25: NAND with MTD partitions only..48

Figure 26: NAND layout with UBI volumes..49

Figure 27: Bar-code sticker...57

Linux on F&S Boards 167

Appendix

Figure 28: Network access via RNDIS..59

Figure 29: Block Refresh with intermediate safety copy..78

Figure 30: Generic Update/Install/Recover flow..79

Figure 31: Regular Boot Process..80

Figure 32: Install Process..81

Figure 33: Update process..82

Figure 34: Recover by copying backup version to active version..83

Figure 35: Recover by re-activating the previous version..83

Figure 36: Recover process..84

Figure 37: Linux kernel and device tree as separate MTD partitions.....................................98

Figure 38: Linux kernel and device tree in separate UBI volumes...99

Figure 39: Linux kernel and device tree are simlpe files in the root filesystem......................99

Figure 40: Download files with TFTP, store in NAND flash...111

Figure 41: Typical eMMC layout..112

Figure 42: Low-level copy external SD card to internal eMMC..114

Figure 43: Copy sysimg to internal eMMC...115

Figure 44: Installing individual files on eMMC..116

Figure 45: Platform devices on an imaginary hardware...118

Figure 46: Old way: Device drivers and board support are both in the kernel image...........120

Figure 47: Old way: Board support for several platforms with Machine IDs.........................121

Figure 48: New way: Device tree is separate from the kernel image...................................122

Figure 49: New way: One device tree per platform..123

Figure 50: Qt Example (Gradients)..151

Figure 51: Layer architecture of Yocto...160

List of Tables

Table 1: F&S Architectures..2

Table 2: Content of the created release directory..24

Table 3: Hardware partitions on eMMC memories...30

Table 4: Incomprehensive list of U-Boot commands..45

Table 5: NAND flash partitioning..47

Table 6: Different UBI volume layout...51

Table 7: Important U-Boot settings..54

168 Linux on F&S Boards

Appendix

Table 8: Necessary environment variables for RNDIS...60

Table 9: Wildcards in FAT names..77

Table 10: Variables to configure Install/Update/Recover Mechanism....................................85

Table 11: Syntax for install/update/recover script locations..87

Table 12: Variables to set kernel source..92

Table 13: Variables to set device tree source..93

Table 14: Variables to set rootfs source...93

Table 15: Variables to set set /deny write access for root filesystem.....................................93

Table 16: Variables to set console output..93

Table 17: Variables to set login prompt origin..94

Table 18: Variables to set network activation...94

Table 19: Variables to set init process file..95

Table 20: Variables to define the MTD partition table..97

Table 21: Variables for UBI volume creation..97

Table 22: Hardware partitions on eMMC and Enhanced Mode..100

Table 23: fsimage sub-commands...104

Table 24: Software partitions on eMMC...113

Table 25: VPU based GStreamer plugins..130

Table 26: Possible distros in the F&S Yocto layer..163

Table 27: Some Yocto images...164

Table 28: Resulting files..165

Table 29: F&S helper functions for Yocto...167

Listings

Listing 1: NBoot menu...35

Listing 2: Hardware accelaration configuration in xorg.conf...149

Linux on F&S Boards 169

Appendix

Important Notice

The information in this publication has been carefully checked and is believed to be entirely
accurate at the time of publication. F&S Elektronik Systeme assumes no responsibility, how-
ever, for possible errors or omissions, or for any consequences resulting from the use of the
information contained in this documentation.

F&S Elektronik Systeme reserves the right to make changes in its products or product spe-
cifications or product documentation with the intent to improve function or design at any time
and without notice and is not required to update this documentation to reflect such changes.

F&S Elektronik Systeme makes no warranty or guarantee regarding the suitability of its
products for any particular purpose, nor does F&S Elektronik Systeme assume any liability
arising out of the documentation or use of any product and specifically disclaims any and all
liability, including without limitation any consequential or incidental damages.

Products are not designed, intended, or authorised for use as components in systems inten-
ded for applications intended to support or sustain life, or for any other application in which
the failure of the product from F&S Elektronik Systeme could create a situation where per-
sonal injury or death may occur. Should the Buyer purchase or use a F&S Elektronik
Systeme product for any such unintended or unauthorised application, the Buyer shall in-
demnify and hold F&S Elektronik Systeme and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, expenses, and reasonable at-
torney fees arising out of, either directly or indirectly, any claim of personal injury or death
that may be associated with such unintended or unauthorised use, even if such claim alleges
that F&S Elektronik Systeme was negligent regarding the design or manufacture of said
product.

170 Linux on F&S Boards

	1 Introduction
	1.1 F&S Board Families and CPU Architectures
	1.2 Scope of This Document

	2 Embedded Linux
	2.1 What Is Linux?
	2.2 What is Embedded Linux?
	2.3 The Command Line Paradigm
	2.4 Manufacturer Versions
	2.5 Linux Kernel Layout
	2.6 Linux Licenses
	2.7 Patents, Designs, Logos

	3 Linux On F&S Boards
	3.1 Linux PC
	3.2 Connections Between Board and PC
	3.3 The Parts of a Linux System
	3.4 Buildroot and Yocto
	3.5 F&S Download Area
	3.6 Release Content
	3.7 Boot Sequence
	3.8 Mass Storage Devices
	3.8.1 NAND
	3.8.2 eMMC
	3.8.3 SD Card
	3.8.4 USB Media

	4 Working With NBoot
	4.1 NBoot on ARM32 (Vybrid, i.MX6)
	4.1.1 Entering NBoot
	4.1.2 Show Bad Blocks
	4.1.3 Erase Flash
	4.1.4 Serial Download
	4.1.5 USB Download
	4.1.6 Save Bootloader Image
	4.1.7 Execute Bootloader
	4.1.8 Create Partitions
	4.1.9 Access Partitions with USB

	4.2 NBoot on ARM64 (i.MX8)
	4.2.1 Handling NBoot

	5 Working With U-Boot
	5.1 Entering U-Boot
	5.2 Commands
	5.3 Command History
	5.4 MTD Partitions
	5.5 UBI Concepts
	5.6 Environment
	5.6.1 Environment Variables
	5.6.2 Special Variables
	5.6.3 Save the Environment
	5.6.4 Using Variables in Commands
	5.6.5 Running Commands in a Variable

	5.7 Network Configuration
	5.7.1 Set MAC Address
	5.7.2 Set IP addresses
	5.7.3 RNDIS

	5.8 Image Download
	5.8.1 Network Download With TFTP or NFS
	5.8.2 Low-level Read From USB Device
	5.8.3 Low-Level Read From SD Card
	5.8.4 Low-level Read From UBI Volume
	5.8.5 High-Level Read From Filesystem

	5.9 Image Storage
	5.9.1 Save to NAND Flash MTD Partition
	5.9.2 Save to UBI Volume
	5.9.3 Save to SD Card or eMMC
	5.9.4 High-Level Write To Filesystem

	5.10 Exporting eMMC as USB Mass Storage Device
	5.11 Booting the Linux System

	6 Special F&S U-Boot Features
	6.1 Simplified $loadaddr
	6.2 Allow Wildcards in FAT Filenames
	6.3 Improved NAND Driver
	6.4 The Install/Update/Recover Mechanism
	6.4.1 Regular Boot Process
	6.4.2 Install Process
	6.4.3 Update Process
	6.4.4 Recover Process
	6.4.5 Configuring the Install/Update/Recover Mechanism
	6.4.6 The update Command
	6.4.7 Creating an Appropriate U-Boot Script Image

	6.5 Linux Boot Strategies
	6.5.1 Kernel Settings
	6.5.2 Device Tree Settings
	6.5.3 Rootfs Settings
	6.5.4 Mode Settings
	6.5.5 Console Settings
	6.5.6 Login Settings
	6.5.7 Network Settings
	6.5.8 Init Settings
	6.5.9 Extra Settings
	6.5.10 Boot Strategy Examples

	6.6 NAND Layout Strategies
	6.6.1 Linux Kernel In MTD partition
	6.6.2 Linux Kernel In Raw UBI Volume
	6.6.3 Linux Kernel In Root Filesystem

	6.7 Configure eMMC For Enhanced Mode
	6.8 Command fsimage To Handle F&S Images
	6.8.1 fsimage on ARM32 (PicoCoreMX6UL[100], PicoCoreMX6SX)
	6.8.2 fsimage on ARM64 (i.MX8)

	7 Common Ways of System Installation
	7.1 Installation to NAND Flash
	7.2 Installation to eMMC
	7.2.1 Installation From SD Card/USB Pendrive With Same Layout
	7.2.2 Installation From SD Card/USB Pendrive With System Image File
	7.2.3 Installing Individual Files

	7.3 F&S Update and Installation Scripts

	8 Working With Linux
	8.1 Busybox
	8.2 Device Trees
	8.3 Devices And Device Drivers
	8.4 Old Way With Board Support Code
	8.5 New Way With Device Trees
	8.6 Advantages of Device Trees
	8.7 Built-in Drivers And Kernel Modules

	9 Using the Standard System and Devices
	9.1 Sysfs
	9.2 bdinfo
	9.3 Serial
	9.4 CAN
	9.5 Ethernet
	9.6 WLAN
	9.7 Qt support
	9.8 Video Processing (gstreamer support)
	9.9 I2C
	9.10 SPI
	9.11 USB Stick (Storage)
	9.12 RTC
	9.13 GPIO
	9.14 Sound
	9.15 Pictures
	9.16 TFTP
	9.17 Telnet
	9.18 SSH
	9.19 VNC
	9.20 RDP
	9.21 Bluetooth

	10 Graphical Environments
	10.1 Rendering
	10.1.1 Weston/Wayland
	10.1.2 X Server technology
	10.1.3 Qt with OpenGL, EGL, EGLFS and more

	10.2 Weston/Wayland Configuration
	10.2.1 General behaviour
	10.2.2 Weston touch calibration
	10.2.3 Xwayland

	10.3 X.Org Server Configuration
	10.3.1 General behaviour
	10.3.2 GPU support
	10.3.3 X.Org Server touch calibration

	10.4 Qt Environment
	10.4.1 Qt touch configuration
	10.4.2 Running Qt5 Example

	11 Compiling the System Software
	11.1 Buildroot
	11.1.1 Install Cross-Compile Toolchain
	11.1.2 Installing the mkimage Tool
	11.1.3 Unpacking the Source Code
	11.1.4 Compiling U-Boot
	11.1.5 Compiling the Linux Kernel
	11.1.6 Compiling Buildroot, Uboot and Linux Kernel

	11.2 Yocto
	11.2.1 Installing the mkimage Tool
	11.2.2 Unpacking the Source Code
	11.2.3 Download Main Yocto
	11.2.4 Configure Yocto for an F&S architecture
	11.2.5 Build a Yocto Image
	11.2.6 Rebuild A Single Package
	11.2.7 Add Packages to an Image
	11.2.8 Useful utilities
	11.2.9 Further reading

	12 Appendix
	List of Figures
	List of Tables
	Listings
	Important Notice

