
FreeRTOS on FSIMX8MP Boards
Manual on how to use/configuring the software

Version 1.2
(2022-07-28)

© F&S Elektronik Systeme GmbH
Untere Waldplätze 23

D-70569 Stuttgart
Germany

Phone: +49(0)711-123722-0
Fax: +49(0)711-123722-99

About This Document
This document describes how to configure the Linux kernel, the device tree and the board to
use it with FreeRTOS and its demo applications provided. The software is configured for
Picocoremx8mp from F&S under Linux/Buildroot.

Remark
The version number on the title page of this document is the version of the document. It is not
related to the version number of any software release. The latest version of this document can
always be found at http://www.fs-net.de.

How to Print This Document

This document is designed to be printed double-sided (front and back) on A4 paper. If you
want to read it with a PDF reader program, you should use a two-page layout where the title
page is an extra single page. The settings are correct if the page numbers are at the outside
of the pages, even pages on the left and odd pages on the right side. If it is reversed, then the
title page is handled wrongly and is part of the first double-page instead of a single page.

Typographical Conventions
We use different fonts and highlighting to emphasize the context of special terms:
File names

Menu entries

Board input/output

Program code

PC input/output

Listings

Generic input/output

Variables

Hints and information

8 9

Titlepage

http://www.fs-net.de/

FreeRTOS on FSiMX8MP Boards vii

History
Date V Platform A,M,R Chapter Description Au
2021 1.0 All A - Derivate from MX8MM-Documentation AD
2021 1.1 All A, M Add CAN examples AD
2022 1.2 All M, R -

8.2.3
8.4.14

Review some chapters
Removed CMSIS example sdma_transfer for UART
Removed UART example hardware_flow_control

TK
TK
TK

V Version
A,M,R Added, Modified, Removed
Au Author

Table of Contents
1 Pin Assignment 1

1.1 PicoCoreMX8MP...1
1.1.1 GPIOS ...1
1.1.2 ECSPI..1
1.1.3 I2C...1
1.1.4 PWM..1
1.1.5 UART_B ..1
1.1.6 CAN...2

2 Introduction 3
3 Installation 4

3.1 Installation of the GCC embedded toolchain ...4
3.2 Download Source Code...4
3.3 Release Content..5
3.4 Unpacking the Source Code..8

4 Getting started 9
4.1 Configure your host computer ...9
4.2 Get the tools and packages...9
4.3 Install Content..9
4.4 Installation of the GCC embedded toolchain ...9
4.5 Patches..10
4.5.1 Additional binaries ...10
4.6 Description of the FreeRTOS directory structure ..11

5 Configuration for Cortex-M7 usage 13
5.1 Changes regarding official U-Boot...13
5.2 Using bootaux..13

6 Building the examples 14
6.1 Adjusting the right UART Console...14
6.2 Prepare.sh ...16
6.3 Make..17

7 Adding custom boards 18

FreeRTOS on FSiMX8MP Boards ix

8 FreeRTOS examples 19
8.1 General build and run information ...19
8.2 Cmsis_driver_examples ..20
8.2.1 ecspi ..20
Int_loopback_transfer..20
sdma_loopback_transfer ...22
8.2.2 i2c ..24
int_b2b_transfer / Master ..24
int_b2b_transfer / Slave ..26
8.2.3 uart ..28
cmsis_iuart_interrupt_transfer...28
cmsis_iuart_sdma_transfer ...28
8.3 demo_apps..30
8.3.1 hello_world ..30
8.3.2 sai_low_power_audio ..31
8.4 driver_examples ..32
8.4.1 ecspi ..32
ecspi_loopback..32
interrupt_b2b_transfer / Master ...33
interrupt_b2b_transfer / Slave ...35
polling_b2b_transfer / Master..37
polling_b2b_transfer / Slave..39
8.4.2 canfd..41
interrupt_transfer ...41
loopback ..43
loopback_transfer..45
ping_pong_buffer_transfer ..46
8.4.3 flexcan ...48
interrupt_transfer ...48
loopback ..51
loopback_transfer..53
ping_pong_buffer_transfer ..54
8.4.4 gpio..57

led_output..57
8.4.5 gpt..58
gpt capture ..58
gpt_timer ...58
8.4.6 i2c ..60
interrupt_b2b_transfer / Master ...60
interrupt_b2b_transfer / Slave ...62
polling_b2b_transfer / Master..64
polling_b2b_transfer / Slave..66
8.4.7 pdm..68
8.4.8 pwm...68
8.4.9 rdc..69
8.4.10 sai ..70
interrupt_transfer ...70
sdma_transfer ...70
8.4.11 sdma..71
memory_to_memory ...71
scatter_gather ...72
8.4.12 sema4..73
8.4.13 tmu...74
tmu_2_monitor_threshold..74
tmu_2_temperature_polling...75
8.4.14 uart ..76
auto_baudrate_detect ...76
idle_detect_sdma_transfer ..77
hardware_flow_control ..78
interrupt ...78
interrupt_rb_transfer..79
interrupt_transfer ...80
polling ..81
sdma_transfer ...82
8.4.15 wdog..83
8.5 mulitcore_examples...84

FreeRTOS on FSiMX8MP Boards xi

8.5.1 rpmsg_lite_pingpong_rtos_linux_remote...84
8.5.2 rpmsg_lite_str_echo_rtos ..86
8.6 rtos_examples ...88
8.6.1 freertos_ecspi ..88
8.6.2 freertos_event..89
8.6.3 freertos_generic...91
8.6.4 freertos_hello...93
8.6.5 freertos_i2c..94
8.6.6 freertos_mutex...96
8.6.7 freertos_queue ..97
8.6.8 freertos_sem..98
8.6.9 freertos_swtimer ..100
8.6.10 freertos_tickless...101
8.6.11 freertos_uart ..102

9 Appendix 103
List of Figures..103
List of Tables ...103
Third Party Agreement from Real Time Engineers Ltd. ..103
Important Notice ..104

Pin Assignment

FreeRTOS on FSiMX8MP Boards 1

1 Pin Assignment
In the following subchapters you can find an overview which pins are used for each Board. The
examples itself also contain the necessary pins.

1.1 PicoCoreMX8MP

1.1.1 GPIOS

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3
SPI_B_MOSI / LED J1_60 J11_6

1.1.2 ECSPI

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.2
SPI_B_MISO J1_58 J11_5
SPI_B_MOSI J1_60 J11_6
SPI_B_SCLK J1_62 J11_3
SPI_B_SS0 J1_64 J11_4
GND --- J11_11

1.1.3 I2C

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3
I2C_A_SCL J1_4 J11_16
I2C_A_SDA J1_6 J11_17
GND --- J11_11

1.1.4 PWM

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3
PWM J2_63 J11_34

1.1.5 UART_B

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3

Pin Assignment

2 FreeRTOS on FSiMX8MP Boards

UART_B_TXD J1_28 J10_5
UART_B_RXD J1_26 J10_3
UART_B_CTS J1_24 J10_6
UART_B_RTS J1_22 J10_4

1.1.6 CAN

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3
CAN1H - J7_4
CAN1L - J7_3

Introduction

FreeRTOS on FSiMX8MP Boards 3

2 Introduction
The F&S FreeRTOS_BSP-package is based on the MCUXpresso Software Development Kit
(SDK) by NXP. It provides comprehensive software support for Kinetis and LPC
Microcontrollers.
The MCUXpresso SDK includes a flexible set of peripheral drivers designed to speed up and
simplify development of embedded applications. Along with the peripheral drivers, the
MCUXpresso SDK provides an extensive and rich set of example applications covering
everything from basic peripheral use case examples to full demo applications. The
MCUXpresso SDK contains FreeRTOS and various other middleware to support rapid
development.

Installation

4 FreeRTOS on FSiMX8MP Boards

3 Installation
This section describes the installation of the CST code-signing client files.

3.1 Installation of the GCC embedded toolchain
The examples are tested and can be built with the GCC embedded toolchain (gcc-arm-none-
eabi-9-2020-q2-update-x86_64-linux), which can be found under developer.arm.com.
If the toolchain is not installed, you have to download the file and extract the content to your
filesystem:

tar -xvjf gcc-arm-none-eabi-${version}.tar.bz2

where ${version} will be replaced by the corresponding version you've downloaded.
It is necessary to export the ARMGCC_DIR environment variable, if it´s not already exported:

export ARMGCC_DIR=/usr/local/arm/gcc-arm-none-eabi-${version}

For a more convenient way you can add this to the rc file of your favorite shell (e.g. zshrc,
bashrc, etc.)

3.2 Download Source Code
To download FreeRTOS source code, go to the F&S main website

http://www.fs-net.de
First you have to register with the website. Click on Login right at the top of the window and on
the text “I am not registered, yet. Register now” (Figure 1).

Figure 1: Register with F&S website

In the screen appearing now, fill in all fields and then click on Register. You are now registered
and can use the personal features of the website, for example the Support Forum and
downloading software.

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
http://www.fs-net.de/

Installation

FreeRTOS on FSiMX8MP Boards 5

After logging in, you are at your personal page, called “My F&S”. You can always reach this
place by selecting Support → My F&S from the top menu. Here you can find all software
downloads that are available for you. In the top sections there are private downloads for you
or your company (may be empty) and in the bottom section you will find generic downloads for
all registered customers.

Figure 2: Unlock software with serial number

To get access to the software of a specific board, you have to enter the serial number of one
of these boards (see Figure 2). Click on “Where can I find the serial number” to get pictures of
examples where to find this number on your product. Enter the number in the white field and
press Submit serial number. This enables the software section for this board type for you. You
will find Linux, Windows CE, and all other software and tools available for this platform like
DCUTerm or NetDCUUsbLoader.

First click on the type of your board, e.g. Picocoremx8mp, then on Linux. Now click on
FreeRTOS. This will bring up a list of all our FreeRTOS releases. Old releases up to 2019 had
<x>.<y> as version identifier, new releases use V<year>.<month>. We will abbreviate this as
<v> from now on. Select the newest version, for example freertos-sdk-2.10-fsimx8mp-
V2021.07. This will finally show two archives that can be downloaded.
When you look at our Linux releases, you will find a list of all our releases and a README text.
There are usually two files related to a release.

freertos-sdk-2.10-fsimx8mp-V<v>.tar.bz2 This is the main release itself
containing all sources, the binary images, the
documentation and the toolchain.

3.3 Release Content
These tar archives are compressed with bzip2. To see the files, you first have to unpack the
archives

tar -xvf freertos-sdk-2.10-<arch>-<v>.tar.bz2

Installation

6 FreeRTOS on FSiMX8MP Boards

This will create a directory <arch>-<v> that contains all the files of the release. They often
use a common naming scheme:

<package>-<platform>-<v>.<extension>

With the following meaning:

<package> The name of the package (e.g. freertos-sdk). If it is a
source package, we also add the version number of the
original package that our release is based on, for example
freertos-sdk-2.10

<platform> The name of a board, if the package is only valid on one
board (e.g. Picocoremx8mp); or the name of an
architecture, if the package is valid on different boards of
the same architecture (e.g. fsimx8mp), or the string f+s
or fus if the package is architecture independent.

<v> Release version, consisting of a letter V for version and the
year and month of the release (e.g. V2021.07).

<extension> The extension of the package (e.g. .bin, .tar.bz2, etc.).

Installation

FreeRTOS on FSiMX8MP Boards 7

The following table lists the files that you get after unpacking the release archive. To avoid
having a too excessive list, we use the wildcard * in some entries to refer to a whole group of
similar file names that only differ in the name of the board or module.

The provided NBoot version 2021.07 or higher must be installed. It contains needed changes
for the Cortex-M7.

Directory/File Description

/ Top directory

Readme-freertos-f+s.txt Release information (FreeRTOS)

setup-freertos Script to unpack FreeRTOS source
packages to a build directory

binaries/ Images to be used with the board
directly

*.bin Precompiled examples for Picocoremx8mp

sources/ Source packages

freertos-sdk-2.10-fsimx8mp-
V2021.07.tar.bz2

FreeRTOS source

toolchain/ Cross-compilation toolchain

gcc-arm-none-eabi-9-2020-q2-update-
x86_64-linux.tar.bz2

ARM toolchain to use with <arch>

doc/ Documentation

FreeRTOS_on_Fsimx8mp_Boards_eng.pdf Manual on how to use/configuring the
software

patches/ Patches for Linux

0001-Improve-support-for-FreeRTOS-
on-fsimx8mp-boards.patch

Patch for Linux

Table 1: Content of the created release directory

Installation

8 FreeRTOS on FSiMX8MP Boards

3.4 Unpacking the Source Code
The source code packages are located in the sources subdirectory of the release archive.
We will assume that you want to create a separate build directory where you extract the source
code and build all the software.

We have prepared a shell script called setup-freertos that does this installation
automatically. Just call it when you are in the top directory of the release and give the name of
the build directory as argument.

cd <release-dir>
./setup-freertos <build-dir>

Add option --dry-run if you want to check first what this command will do. Then only a list of
actions will be output but no actual changes will take place. For further information simply call

./setup-freertos --help

If you prefer to do the installation by hand, well, the script more or less executes the following
commands, just with some more checks and directory switching.

mkdir <build-dir>
tar xf freertos-sdk-2.10-fsimx8mp-<v>.tar.bz2

Getting started

FreeRTOS on FSiMX8MP Boards 9

4 Getting started

4.1 Configure your host computer
In order to configure your computer properly (in order to use F&S software) please refer to the
“AdvicesForLinuxOnPC” guide provided by F&S Elektronik Systeme. After you have done this,
continue with this guide.

4.2 Get the tools and packages
Get the F&S FreeRTOS_BSP-package from the F&S website under
my F&S /picocoremx8mp/Linux/ FreeRTOS/freertos-sdk-2.10-fsimx8mp-
V<YEAR>.<MONTH>.tar.bz2

4.3 Install Content
We have prepared a shell script called setup-freertos.sh that does this installation
automatically. Just call it when you are in the top directory of the release and give the name of
the build directory as argument.

cd <release-dir>

./setup-freertos

Add option --dry-run if you want to check first what this command will do. Then only a list
of actions will be output but no actual changes will take place. For further information simply
call

./setup-freertos --help

If you prefer to do the installation by hand, well, the script more or less executes the following
commands, just with some more checks and directory switching.

mkdir <build-dir>

tar xf freertos-sdk-2.10-fsimx8mp-V<year>.<month>.tar.bz2

Please install the provided NBoot located in binaries/nboot-fsimx8mp-<v>.fs

4.4 Installation of the GCC embedded toolchain
The examples can be built with the GCC embedded toolchain (gcc-arm-none-eabi-9-2020-q2),
which can be found under developer.arm.com or the toolchain directory of the release archive.

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads

Getting started

10 FreeRTOS on FSiMX8MP Boards

Extract the content to your filesystem:

tar -xvjf gcc-arm-none-eabi-${version}.tar.bz2

where ${version} will be replaced by the corresponding version you've downloaded.

It is necessary to export the ARMGCC_DIR environment variable:

export ARMGCC_DIR=/usr/local/arm/gcc-arm-none-eabi-${version}

For a more convenient way you can add this command to the rc file of your favorite shell (e.g.
zshrc, bashrc, etc.)

4.5 Patches
This release provides a necessary patch for the Linux kernel. This change is crucial. The patch
is independent from the release type, it must be applied for fsimx8mp-Y2021.04 and for
fsimx8mp-B2021.06. For newer fsimx8mp releases the patch is not necessary anymore.
Please make sure to install it according to the used one.

4.5.1 Additional binaries

Besides the binaries of the respective FreeRTOS example in the binaries/ directory, the
required NBoot version 2021.07 or higher can be found here. It contains additional fixes for the
Cortex-M7. This version must be installed, otherwise certain examples will not work correctly.
For further information on how to install/update the NBoot, please refer to the document
“LinuxOnFSBoards”.

Getting started

FreeRTOS on FSiMX8MP Boards 11

4.6 Description of the FreeRTOS directory structure
The following table describes the directory structure of the FreeRTOS BSP

/ Top Directory

bin
After you have run the make command the output binaries or
images can be found here in their specific $boardname-
directory.

build After you have run the make command, this directory contains
the .bin, .elf, .hex, .map and object files for each example.

CMakeFiles Contains CMake-specific files. Normally you don’t have to
change anything in here.

CMSIS Contains the Cortex Microcontroller Software Interface Standard
(CMSIS) library.

devices Contains socket specific files and drivers.

doc Contains the original documentation by NXP.

examples/

Contains the SoC and board specific Cortex-M7 examples. The
first level distinguishes between the different SoC-architectures.
At the second level you will find the SoC specific examples. For
the MX8MP-examples the board specific examples are located
directly in the directory of each example.
The examples are structured as follows:

cmsis_driver_examples Contains examples that shows the usage of the Cortex
Microcontroller Software Interface Standard (CMSIS)

 demo_apps
Here you can find the applications which highlight certain key
features of the ARM Cortex-M7 Core combined with FreeRTOS
and bare metal.

 driver_examples
You can find simple applications here which are intended to
show peripheral drivers working in the bare metal environment.
Because some of the examples use special onboard sensors,
they did not get ported.

 multicore_examples Here you can find examples, which demonstrate the multicore
communication via RPMsg.

 rtos_examples These examples show the usage of different FreeRTOS-
specific functions.

 not_tested
Contains examples that have not been tested yet. This can have
different reasons like missing sensors or hardware on the EVK.
Some of them will be ported in the future. If you are interested in
porting one of these examples please contact F&S Electronic

Getting started

12 FreeRTOS on FSiMX8MP Boards

Systeme. For further information refer to the porting_readme.txt
located at not_tested/<soc>/.

 rtos Contains the operating system freertos.

 tools Contains different tools needed for the building process.
Table 2: Description of the directory structure

Configuration for Cortex-M7 usage

FreeRTOS on FSiMX8MP Boards 13

5 Configuration for Cortex-M7 usage

5.1 Changes regarding official U-Boot
F&S provides you with a modified U-Boot which can make use of the Cortex-M7 via the
bootaux command. Since our U-Boot is heavily modified compared to the official release from
NXP, it's not advisable to use any other than the one provided by F&S.
F&S added some environment variables to simplify the auxiliary core handling:

Run

setenv m7_file <example_name>

to set the name of the example you want to load.

Run

run m7

5.2 Using bootaux
Simple start
Using the auxiliary core can be achieved by using the following command line inside of the U-
Boot environment:

tftp ${m7_file}; cp.b $loadaddr 0x007E0000 $filesize; bootaux
0x007E0000

This will load an image defined by M7_file via tftp to your board, move it to the TCM and start
the auxiliary core.

Building the examples

14 FreeRTOS on FSiMX8MP Boards

6 Building the examples
To simplify the process of building, configuring the examples and cleaning up we provide you
with a set of bash scripts located in the root directory of the FreeRTOS BSP:

6.1 Adjusting the right UART Console

If the PicoCoreBBDSI REV >= 1.20 is used, this step can be ignored.

Users that use the PicoCoreBBDSI REV1.10 baseboard need to make a few changes in every
example they may run since there are major differences in the Output of those ports between
revision 1.10 and 1.20. since the examples are ported to run on revision 1.20.
The changes are basically the same in every example, except for those that show UART
functionality. UART examples have to be modified further by changing the ‘4’ in every mention
of UART into ‘3’. For all other examples it is just a few lines that need minor changes that are
necessary to get an output on the Debug Console.
The following list shows all the changes necessary for all examples:
board.c
CLOCK_EnableClock(kCLOCK_Uart4);

Needs to be changed to:

CLOCK_EnableClock(kCLOCK_Uart3);

board.h
#define BOARD_DEBUG_UART_BASEADDR UART1_BASE

#define BOARD_DEBUG_UART_INSTANCE 4U

#define BOARD_DEBUG_UART_CLK_FREQ
\

 CLOCK_GetPllFreq(kCLOCK_SystemPll1Ctrl) /
(CLOCK_GetRootPreDivider(kCLOCK_RootUart4)) / \

 (CLOCK_GetRootPostDivider(kCLOCK_RootUart4)) / 10

#define BOARD_UART_IRQ UART1_IRQn

#define BOARD_UART_IRQ_HANDLER UART1_IRQHandler

Needs to be changed to:

#define BOARD_DEBUG_UART_BASEADDR UART3_BASE

#define BOARD_DEBUG_UART_INSTANCE 3U

#define BOARD_DEBUG_UART_CLK_FREQ
\

Building the examples

FreeRTOS on FSiMX8MP Boards 15

 CLOCK_GetPllFreq(kCLOCK_SystemPll1Ctrl) /
(CLOCK_GetRootPreDivider(kCLOCK_RootUart3)) / \

 (CLOCK_GetRootPostDivider(kCLOCK_RootUart3)) / 10

#define BOARD_UART_IRQ UART3_IRQn

#define BOARD_UART_IRQ_HANDLER UART3_IRQHandler

clock_config.c
CLOCK_SetRootMux(kCLOCK_RootUart3,
kCLOCK_UartRootmuxSysPll1Div10); /* Set UART source to SysPLL1
Div10 80MHZ */

 CLOCK_SetRootDivider(kCLOCK_RootUart3, 1U, 1U);
/* Set root clock to 80MHZ/ 1= 80MHZ */

Needs to be changed to:

CLOCK_SetRootMux(kCLOCK_RootUart3,
kCLOCK_UartRootmuxSysPll1Div10); /* Set UART source to SysPLL1
Div10 80MHZ */

 CLOCK_SetRootDivider(kCLOCK_RootUart3, 1U, 1U);
/* Set root clock to 80MHZ/ 1= 80MHZ */

pin_muc.c
IOMUXC_SetPinMux(IOMUXC_UART1_RXD_UART1_RX, 0U);

 IOMUXC_SetPinConfig(IOMUXC_UART1_RXD_UART1_RX,

 IOMUXC_SW_PAD_CTL_PAD_DSE(6U) |

 IOMUXC_SW_PAD_CTL_PAD_FSEL(2U));

 IOMUXC_SetPinMux(IOMUXC_UART1_TXD_UART1_TX, 0U);

 IOMUXC_SetPinConfig(IOMUXC_UART1_TXD_UART1_TX,

 IOMUXC_SW_PAD_CTL_PAD_DSE(6U) |

 IOMUXC_SW_PAD_CTL_PAD_FSEL(2U));

Needs to be changed to:

IOMUXC_SetPinMux(IOMUXC_UART3_RXD_UART3_RX, 0U);

 IOMUXC_SetPinConfig(IOMUXC_UART3_RXD_UART3_RX,

 IOMUXC_SW_PAD_CTL_PAD_DSE(6U) |

 IOMUXC_SW_PAD_CTL_PAD_FSEL(2U));

 IOMUXC_SetPinMux(IOMUXC_UART3_TXD_UART3_TX, 0U);

 IOMUXC_SetPinConfig(IOMUXC_UART3_TXD_UART3_TX,

Building the examples

16 FreeRTOS on FSiMX8MP Boards

 IOMUXC_SW_PAD_CTL_PAD_DSE(6U) |

 IOMUXC_SW_PAD_CTL_PAD_FSEL(2U));

6.2 Prepare.sh
This script will configure board relevant settings and create symlinks to the board specific
header files. You can execute the script in your terminal by typing

./prepare.sh

and follow the instructions:
Choose one of the following boards for which you want to build the
examples:

efusa9x[1] picocoma9x[2] …[…] picocoremx8mp[6]

Enter number in []-brackets for the corresponding board: 6

Do you want a Release or Debug build?

(r/d) [default: r]: r

All set up, starting cmake...

If you have different DRAM sizes for your boards, just edit prepare.sh to your personal
preferences. If you’ve chosen the picocoremx8mp board you’ll be asked to select a module
variant.

Most of the examples can be run from TCM or directly from the QSPI-flash. In future releases
it will be possible to choose this in the prepare.sh script but for now only TCM is supported.

Building the examples

FreeRTOS on FSiMX8MP Boards 17

6.3 Make
The prepare.sh script will configure and invoke CMake to generate a Makefile. After this,
you can run

make -jN

To build all examples located in examples/fsimx8mp and install the binaries to
bin/$BOARD.

N is the number of cores your CPU have.

If you want to build a specific example just type

make -jN example_name && make install/fast

to build and install the binary of the chosen example.

Type

make help

for a list of possible examples for make.

By executing

make clean-all

you can clean up all build files and binaries. This will be necessary if you make changes to the
CMakeLists.txt in the root directory of the FreeRTOS BSP or when the target module has
changed i.e. V3/V4 to V5/V6. In this case, just rerunning the prepare.sh script won’t be
sufficient and will lead to faulty variables.

Adding custom boards

18 FreeRTOS on FSiMX8MP Boards

7 Adding custom boards
If you're using a custom board, you have to tell the prepare.sh script about its existence and
create some configuration files (or simply copy the existing ones).
To tell the script about it, change the following lines in the prepare.sh script:

declare -a SUPPORTED_BOARDS=("efusa9x" "picocoma9x" "picocoremx6sx"
“picocoremx7ulp” “picocoremx8mm” “picocoremx8mp” "boardname")

where boardname represent the name of your board and an entry to

declare -a SUPPORTED_SOCS=("fsimx6sx" "fsimx6sx" "fsimx6sx" "fsimx7ulp" “fsimx6sx”
“fsimx8mm” “fsimx8mp” “SOC”)

so the number of your boardname matches the number of its specific SOC.
The following files, located at examples/fsimx6sx/board_specific_files/boardname, are needed
to successfully compile the BSP for your own board:

 boardname_board.c

 boardname_board.h

 boardname_pin_mux.c

 boardname_pin_mux.h

 boardname_gpio_pins.c

 boardname_gpio_pins.h
boardname must be replaced by the name of your board. This must be same name as uses in
the SUPPORTED_BOARDS array used in the prepare.sh script.

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 19

8 FreeRTOS examples
In this chapter we will provide you with necessary information on the demo and driver
applications.
The “Description” will inform you about the demo's purpose.
In the “Modifications made” section you will find useful information if changes were made to
certain files by F&S and the reason behind these changes.
“Changes needed” is the most important section. You will find the information necessary to
successfully build and execute the examples here.
The last section, “Execute binary” will tell you the required steps to execute the image built.

8.1 General build and run information
Connect UART1 (Cortex M7) and UART2 (Cortex A53) with two serial cables (serial-to-
modem) to your PC.
Open up two Terminals and connect the UARTs via the COM interface and the following
settings:

Baud rate: 115200
Data: 8 bit
Parity: none
Stop: 1 bit
Flow control: none
Transmit delay: 0 msec/char 0 msec/line

Build the examples like described in Building the examples and copy them to you tftp-
directory.
To use the SDMA examples, the device tree has to be modified so that the M7 has access
to the SDMA module. However, this will also take away the SPI_A from the A53 core.
To do so, please change the #if 0 to #if 1

Figure 3: Device tree entry

FreeRTOS examples

20 FreeRTOS on FSiMX8MP Boards

8.2 Cmsis_driver_examples

8.2.1 ecspi

Int_loopback_transfer

Description
CMSIS-Driver defines generic peripheral driver interfaces for middleware making it reusable
across a wide range of supported microcontroller devices. The API connects microcontroller
peripherals with middleware that implements for example communication stacks, file systems,
or graphic user interfaces. More information and usage method please refer to
http://www.keil.com/pack/doc/cmsis/Driver/html/index.html.
The cmsis_ecspi_int_loopback_transfer example shows how to use CMSIS ECSPI driver in
interrupt way:
In this example, ECSPI will do a loopback transfer in interrupt way, so, there is no need to set
up any pins. And we should set the ECSPIx->TESTREG[LBC] bit, this bit is used in Master
mode only. When this bit is set, the ECSPI connects the transmitter and receiver sections
internally, and the data shifted out from the most-significant bit of the shift register is looped
back into the least-significant bit of the Shift register. In this way, a self-test of the complete
transmit/receive path can be made. The output pins are not affected, and the input pins are
ignored.

Modifications made
None.

Changes needed
None.

Execute binary
Run
setenv m7_file "cmsis_ecspi_int_loopback_transfer.bin"

run m7

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 21

Output
When the demo runs successfully, the log would be seen on the debug terminal like:

This is ECSPI CMSIS interrupt loopback transfer example.

The ECSPI will connect the transmitter and receiver sections
internally.

Start transfer...

 This is ECSPI_MasterSignalEvent_t.

Transfer completed!

ECSPI transfer all data matched!

FreeRTOS examples

22 FreeRTOS on FSiMX8MP Boards

sdma_loopback_transfer

Description
CMSIS-Driver defines generic peripheral driver interfaces for middleware making it reusable
across a wide range of supported microcontroller devices. The API connects microcontroller
peripherals with middleware that implements for example communication stacks, file systems,
or graphic user interfaces. More information and usage method please refer to
http://www.keil.com/pack/doc/cmsis/Driver/html/index.html.
The cmsis_ecspi_sdma_loopback_transfer example shows how to use CMSIS ECSPI driver
in SDMA way:
In this example, ECSPI will do a loopback transfer in SDMA way, so, there is no need to set
up any pins. And we should set the ECSPIx->TESTREG[LBC] bit, this bit is used in Master
mode only. When this bit is set, the ECSPI connects the transmitter and receiver sections
internally, and the data shifted out from the most-significant bit of the shift register is looped
back into the least-significant bit of the Shift register.
In this way, a self-test of the complete transmit/receive path can be made. The output pins are
not affected,
and the input pins are ignored.

Modifications made
None.

Changes needed
To use the example, please mind the necessary changes.

Execute binary
Run
setenv m7_file "cmsis_ecspi_sdma_loopback_transfer.bin"

run m7

to start the example.

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 23

Output
The log below shows the output of the hello world demo in the terminal window:

This is ECSPI CMSIS SDMA loopback transfer example.

The ECSPI will connect the transmitter and receiver sections
internally.

Start transfer...

 This is ECSPI_MasterSignalEvent_t

Transfer completed!

ECSPI transfer all data matched!

FreeRTOS examples

24 FreeRTOS on FSiMX8MP Boards

8.2.2 i2c

int_b2b_transfer / Master

Description
CMSIS-Driver defines generic peripheral driver interfaces for middleware making it reusable
across a wide range of supported microcontroller devices. The API connects microcontroller
peripherals with middleware that implements for example communication stacks, file systems,
or graphic user interfaces. More information and usage method please refer to
http://www.keil.com/pack/doc/cmsis/Driver/html/index.html.
The i2c_interrupt_b2b_transfer_master example shows how to use CMSIS i2c driver as
master to do board to board transfer with interrupt:
In this example, one i2c instance as master and another i2c instance on the other board as
slave. Master sends a piece of data to slave and receive a piece of data from slave. This
example checks if the data received from slave is correct.
Modifications made

Changes needed
Function PCOREMX8MM Rev 1.3 PCOREMX8MX Rev 1.2 BBDSI Rev 1.3

I2C_A_SCL J1_4 J11_16
I2C_A_SDA J1_6 J11_17
GND --- J11_11

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3
I2C_A_SCL J1_4 J11_16
I2C_A_SDA J1_6 J11_17
GND --- J11_11

Execute binary
Run
setenv m7_file "cmsis_ii2c_b2b_transfer_master.bin"

run m7

to start the example.

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 25

Output
When the demo runs successfully, the following message is displayed in the terminal:

CMSIS I2C board2board interrupt example -- Master transfer.

Master will send data :

0x 0 0x 1 0x 2 0x 3 0x 4 0x 5 0x 6 0x 7

0x 8 0x 9 0x a 0x b 0x c 0x d 0x e 0x f

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

0x18 0x19 0x1a 0x1b 0x1c 0x1d 0x1e 0x1f

Receive sent data from slave :

0x 0 0x 1 0x 2 0x 3 0x 4 0x 5 0x 6 0x 7

0x 8 0x 9 0x a 0x b 0x c 0x d 0x e 0x f

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

0x18 0x19 0x1a 0x1b 0x1c 0x1d 0x1e 0x1f

End of I2C example .

FreeRTOS examples

26 FreeRTOS on FSiMX8MP Boards

int_b2b_transfer / Slave

Description
CMSIS-Driver defines generic peripheral driver interfaces for middleware making it reusable
across a wide range of supported microcontroller devices. The API connects microcontroller
peripherals with middleware that implements for example communication stacks, file systems,
or graphic user interfaces. More information and usage method please refer to
http://www.keil.com/pack/doc/cmsis/Driver/html/index.html.
The i2c_interrupt_b2b_transfer_master example shows how to use CMSIS i2c driver as
master to do board to board transfer with interrupt:
In this example, one i2c instance as master and another i2c instance on the other board as
slave. Master sends a piece of data to slave and receive a piece of data from slave. This
example checks if the data received from slave is correct.
Modifications made

Changes needed
Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3

I2C_A_SCL J1_4 J11_16
I2C_A_SDA J1_6 J11_17
GND --- J11_11

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3
I2C_A_SCL J1_4 J11_16
I2C_A_SDA J1_6 J11_17
GND --- J11_11

Execute binary
Run
setenv m7_file "cmsis_ii2c_b2b_transfer_slave.bin"

run m7

to start the example.

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 27

Output
When the demo runs successfully, the following message is displayed in the terminal:

CMSIS I2C board2board interrupt example -- Slave transfer.

Slave received data :

0x 0 0x 1 0x 2 0x 3 0x 4 0x 5 0x 6 0x 7

0x 8 0x 9 0x a 0x b 0x c 0x d 0x e 0x f

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

0x18 0x19 0x1a 0x1b 0x1c 0x1d 0x1e 0x1f

End of I2C example .

FreeRTOS examples

28 FreeRTOS on FSiMX8MP Boards

8.2.3 uart

cmsis_iuart_interrupt_transfer

Description

CMSIS-Driver defines generic peripheral driver interfaces for middleware making it reusable
across a wide range of supported microcontroller devices. The API connects microcontroller
peripherals with middleware that implements for example communication stacks, file systems,
or graphic user interfaces. More information and usage method please refer to
http://www.keil.com/pack/doc/cmsis/Driver/html/index.html.

The cmsis_uart_interrupt_transfer example shows how to use uart cmsis driver in interrupt
way:

In this example, one uart instance connect to PC through uart, the board will send back all
characters that PC send to the board.

The example echo every 8 characters, so input 8 characters every time.

Modifications made
None.

Changes needed
None.

Execute binary
Run
setenv m7_file "cmsis_iuart_interrupt_transfer.bin"

run m7

to start the example.

Output
When the demo runs successfully, the log would be seen on the debug terminal like:

USART CMSIS interrupt example

Board receives 8 characters then sends them out

Now please input:

cmsis_iuart_sdma_transfer

This example has not been ported yet.

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 29

FreeRTOS examples

30 FreeRTOS on FSiMX8MP Boards

8.3 demo_apps
Remark
The documentation is based on the FreeRTOS BSP 2.10 package from NXP.
Some of the software examples provided by NXP expect a certain module or sensor to be
available on the board. Since F&S boards do NOT provide these, the associated examples
weren't ported at all.

8.3.1 hello_world

Description

The Hello World demo application provides a sanity check for the new SDK build environments
and board bring up. The Hello World demo prints the "Hello World" string to the terminal using
the SDK UART drivers. The purpose of this demo is to show how to use the UART, and to
provide a simple project for debugging and further development.

Please input one character at a time. If you input too many characters each time, the receiver
may overflow because the low level UART uses simple polling way for receiving. If you want
to try inputting many characters each time, just define
DEBUG_CONSOLE_TRANSFER_NON_BLOCKING in your project to use the advanced
debug console utility.

Modifications made
None.

Changes needed
None.

Execute binary
Run
setenv m7_file "hello_world.bin"

run m7

to start the example.

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 31

Output
The log below shows the output of the hello world demo in the terminal window:

hello world.

8.3.2 sai_low_power_audio

This example has not been ported yet.

FreeRTOS examples

32 FreeRTOS on FSiMX8MP Boards

8.4 driver_examples

8.4.1 ecspi

ecspi_loopback

Description

The ecspi_loopback demo shows how the ecspi do a loopback transfer internally. The ECSPI
connects the transmitter and receiver sections internally, and the data shifted out from the
most-significant bit of the shift register is looped back into the least-significant bit of the Shift
register. In this way, a self-test of the complete transmit/receive path can be made. The ouput
pins are not affected, and the input pins are ignored.

Modifications made
None.

Changes needed
None.
Execute binary

Run

setenv m7_file "ecspi_loopback.bin"

run m7

to start the example.
Output
If the demo run successfully, the below log will be print in the terminal window:

ECSPI Loopback Demo

This demo is a loopback transfer test for ECSPI.

The ECSPI will connect the transmitter and receiver sections
internally.

So, there is no need to connect the MOSI and MISO pins.

ECSPI loopback test pass!

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 33

interrupt_b2b_transfer / Master

Description

The ecspi_interrupt_b2b_transfer example shows how to use ECSPI driver in interrupt way:

In this example , we need two boards, one board used as ECSPI master and another board
used as ECSPI slave. The file 'ecspi_interrupt_b2b_transfer_master.c' includes the ECSPI
master code. This example uses the transactional API in ECSPI driver.

1. ECSPI master send/received data to/from ECSPI slave in interrupt. (ECSPI Slave using
interrupt to receive/send the data)

Modifications made
None.

Changes needed
Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.2

SPI_B_MISO J1_58 J11_5
SPI_B_MOSI J1_60 J11_6
SPI_B_SCLK J1_62 J11_3
SPI_B_SS0 J1_64 J11_4
GND --- J11_11

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.2
SPI_B_MISO J1_58 J11_5
SPI_B_MOSI J1_60 J11_6
SPI_B_SCLK J1_62 J11_3
SPI_B_SS0 J1_64 J11_4
GND --- J11_11

Execute binary

Run

setenv m7_file "ecspi_interrupt_b2b_transfer_master.bin"

run m7

to start the example.

FreeRTOS examples

34 FreeRTOS on FSiMX8MP Boards

Output
When the demo runs successfully, the log would be seen on the debug terminal like:

ECSPI board to board interrupt example.

This example use one board as master and another as slave.

Master and slave uses interrupt way. Slave should start first.

Please make sure you make the correct line connection. Basically,
the connection is:

ECSPI_master -- ECSPI_slave

 CLK -- CLK

 PCS -- PCS

 MOSI -- MOSI

 MISO -- MISO

 GND -- GND

 Master transmit:

 1 2 3 4 5 6 7 8 9 A B C D E F 10

 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30

 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40

ECSPI transfer all data matched!

 Master received:

 1 2 3 4 5 6 7 8 9 A B C D E F 10

 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30

 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40

 Press any key to run again

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 35

interrupt_b2b_transfer / Slave

Description

The ecspi_interrupt_b2b_transfer example shows how to use ECSPI driver in interrupt way:

In this example, we need two boards, one board used as ECSPI master and another board
used as ECSPI slave. The file 'ecspi_interrupt_b2b_transfer_slave.c' includes the ECSPI slave
code. This example uses the transactional API in ECSPI driver.

1. ECSPI master send/received data to/from ECSPI slave in interrupt. (ECSPI Slave using
interrupt to receive/send the data)

Modifications made
None.

Changes needed
Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.2

SPI_B_MISO J1_58 J11_5
SPI_B_MOSI J1_60 J11_6
SPI_B_SCLK J1_62 J11_3
SPI_B_SS0 J1_64 J11_4
GND --- J11_11

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.2
SPI_B_MISO J1_58 J11_5
SPI_B_MOSI J1_60 J11_6
SPI_B_SCLK J1_62 J11_3
SPI_B_SS0 J1_64 J11_4
GND --- J11_11

Execute binary

Run

setenv m7_file "ecspi_interrupt_b2b_transfer_slave.bin"

run m7

to start the example.

FreeRTOS examples

36 FreeRTOS on FSiMX8MP Boards

Output
When the demo runs successfully, the log would be seen on the debug terminal like:

ECSPI board to board interrupt example.

 Slave example is running...

 Slave starts to receive data!

 This is ECSPI slave transfer completed callback.

 It's a successful transfer.

 Slave starts to transmit data!

 This is ECSPI slave transfer completed callback.

 It's a successful transfer.

 Slave receive:

 1 2 3 4 5 6 7 8 9 A B C D E F 10

 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30

 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40

 Slave example is running...

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 37

polling_b2b_transfer / Master

Description

The ecspi_polling_b2b_transfer example shows how to use ECSPI driver in polling way:

In this example, we need two boards, one board used as ECSPI master and another board
used as ECSPI slave. The file 'ecspi_polling_b2b_transfer_master.c' includes the ECSPI
master code.

1. ECSPI master send/receive data to/from ECSPI slave in polling. (ECSPI Slave using
interrupt to receive/send the data)

Modifications made

None.
Changes needed

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.2
SPI_B_MISO J1_58 J11_5
SPI_B_MOSI J1_60 J11_6
SPI_B_SCLK J1_62 J11_3
SPI_B_SS0 J1_64 J11_4
GND --- J11_11

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.2
SPI_B_MISO J1_58 J11_5
SPI_B_MOSI J1_60 J11_6
SPI_B_SCLK J1_62 J11_3
SPI_B_SS0 J1_64 J11_4
GND --- J11_11

Execute binary

Run

setenv m7_file "ecspi_polling_b2b_transfer_master.bin"

run m7

to start the example.
Output
If the demo runs successfully, the log below will be print in the terminal window:

ECSPI board to board polling example.

FreeRTOS examples

38 FreeRTOS on FSiMX8MP Boards

This example use one board as master and another as slave.

Master uses polling way and slave uses interrupt way.

Please make sure you make the correct line connection. Basically,
the connection is:

ECSPI_master -- ECSPI_slave

 CLK -- CLK

 PCS -- PCS

 MOSI -- MOSI

 MISO -- MISO

 GND -- GND

 Master transmit:

 1 2 3 4 5 6 7 8 9 A B C D E F 10

 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30

 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40

ECSPI transfer all data matched!

 Master received:

 1 2 3 4 5 6 7 8 9 A B C D E F 10

 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30

 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40

 Press any key to run again

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 39

polling_b2b_transfer / Slave

Description

The ecspi_polling_b2b_transfer example shows how to use ECSPI driver in polling way:

In this example, we need two boards, one board used as ECSPI master and another board
used as ECSPI slave. The file 'ecspi_polling_b2b_transfer_slave.c' includes the ECSPI slave
code.

1. ECSPI master send/received data to/from ECSPI slave in polling . (ECSPI Slave using
interrupt to receive/send the data)

Modifications made
None.

Changes needed
Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.2

SPI_B_MISO J1_58 J11_5
SPI_B_MOSI J1_60 J11_6
SPI_B_SCLK J1_62 J11_3
SPI_B_SS0 J1_64 J11_4
GND --- J11_11

Execute binary

Run

setenv m7_file "ecspi_polling_b2b_transfer_master.bin"

run m7

to start the example.

FreeRTOS examples

40 FreeRTOS on FSiMX8MP Boards

Output
When the demo runs successfully, the log would be seen on the debug terminal like:

ECSPI board to board polling example.

 Slave example is running...

 Slave starts to receive data!

 This is ECSPI slave transfer completed callback.

 It's a successful transfer.

 Slave starts to transmit data!

 This is ECSPI slave transfer completed callback.

 It's a successful transfer.

 Slave receive:

 1 2 3 4 5 6 7 8 9 A B C D E F 10

 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30

 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40

 Slave example is running...

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 41

8.4.2 canfd

interrupt_transfer

Description
This example demonstrates the CAN FD functionality. Two boards are connected via CAN
High and CAN Low while one board acts as node A and the other as node B. Node A sends a
CAN message to node B when a key is pressed.
HINT: Only Industrial i.MX8MP supports CAN-FD. Therefore, ensure that both boards are
equipped with the correct CPU.

Modifications made
None.
Changes needed

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.2
SPI_B_MISO J1_58 J11_5
SPI_B_MOSI J1_60 J11_6
SPI_B_SCLK J1_62 J11_3
SPI_B_SS0 J1_64 J11_4
GND --- J11_11

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3
CAN1H - J7_4
CAN1L - J7_3

Execute binary

Run

setenv m7_file "canfd_interrupt_transfer.bin"

run m7

to start the example.

FreeRTOS examples

42 FreeRTOS on FSiMX8MP Boards

Output
Node A

********* FLEXCAN Interrupt EXAMPLE *********

 Message format: Standard (11 bit id)

 Message buffer 9 used for Rx.

 Message buffer 8 used for Tx.

 Interrupt Mode: Enabled

 Operation Mode: TX and RX --> Normal

Please select local node as A or B:

Note: Node B should start first.

Node:a

Press any key to trigger one-shot transmission

Rx MB ID: 0x123, Rx MB data: 0x0, Time stamp: 8877

Press any key to trigger the next transmission!

Rx MB ID: 0x123, Rx MB data: 0x1, Time stamp: 32459

Press any key to trigger the next transmission!

Node B

********* FLEXCAN Interrupt EXAMPLE *********

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 43

 Message format: Standard (11 bit id)

 Message buffer 9 used for Rx.

 Message buffer 8 used for Tx.

 Interrupt Mode: Enabled

 Operation Mode: TX and RX --> Normal

Please select local node as A or B:

Note: Node B should start first.

Node:b

Start to Wait data from Node A

Rx MB ID: 0x321, Rx MB data: 0x0, Time stamp: 5759

Wait Node A to trigger the next transmission!

Rx MB ID: 0x321, Rx MB data: 0x1, Time stamp: 57276

Wait Node A to trigger the next transmission!

loopback

Description
This example demonstrates the CAN FD functionality. The board connects the RX and TX
message buffers internally.

FreeRTOS examples

44 FreeRTOS on FSiMX8MP Boards

HINT: Only Industrial i.MX8MP supports CAN-FD. Therefore, ensure that both boards are
equipped with the correct CPU.

Modifications made
None.
Changes needed

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.2
SPI_B_MISO J1_58 J11_5
SPI_B_MOSI J1_60 J11_6
SPI_B_SCLK J1_62 J11_3
SPI_B_SS0 J1_64 J11_4
GND --- J11_11

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3
CAN1H - J7_4
CAN1L - J7_3

Execute binary

Run

setenv m7_file "canfd_loopback.bin"

run m7

to start the example.

Output
==FlexCAN loopback functional example -- Start.==

Send message from MB8 to MB9

tx word0 = 0x0

tx word1 = 0x1

tx word2 = 0x2

tx word3 = 0x3

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 45

Received message from MB9

rx word0 = 0x0

rx word1 = 0x1

rx word2 = 0x2

rx word3 = 0x3

==FlexCAN loopback functional example -- Finish.==

loopback_transfer

Description
This example demonstrates the CAN FD functionality. The board connects the RX and TX
message buffers internally.
HINT: Only Industrial i.MX8MP supports CAN-FD. Therefore, ensure that both boards are
equipped with the correct CPU.

Modifications made
None.
Changes needed

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.2
SPI_B_MISO J1_58 J11_5
SPI_B_MOSI J1_60 J11_6
SPI_B_SCLK J1_62 J11_3
SPI_B_SS0 J1_64 J11_4
GND --- J11_11

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3
CAN1H - J7_4
CAN1L - J7_3

Execute binary

Run

setenv m7_file "canfd_loopback_transfer.bin"

run m7

to start the example.

FreeRTOS examples

46 FreeRTOS on FSiMX8MP Boards

Output
==FlexCAN loopback functional example -- Start.==

Send message from MB8 to MB9

tx word0 = 0x0

tx word1 = 0x1

tx word2 = 0x2

tx word3 = 0x3

tx word4 = 0x4

tx word5 = 0x5

tx word6 = 0x6

tx word7 = 0x7

Received message from MB9

rx word0 = 0x0

rx word1 = 0x1

rx word2 = 0x2

rx word3 = 0x3

rx word4 = 0x4

rx word5 = 0x5

rx word6 = 0x6

rx word7 = 0x7

==FlexCAN loopback functional example -- Finish.==

ping_pong_buffer_transfer

Description
This example demonstrates the CAN FD functionality. Two boards are connected via CAN
High and CAN Low while one board acts as node A and the other as node B. Node A sends a
defined number of CAN messages to node B put in by the user.
HINT: Only Industrial i.MX8MP supports CAN-FD. Therefore, ensure that both boards are
equipped with the correct CPU.

Modifications made
None.
Changes needed

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.2
SPI_B_MISO J1_58 J11_5

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 47

SPI_B_MOSI J1_60 J11_6
SPI_B_SCLK J1_62 J11_3
SPI_B_SS0 J1_64 J11_4
GND --- J11_11

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3
CAN1H - J7_4
CAN1L - J7_3

Execute binary

Run

setenv m7_file "canfd_ping_pong_buffer_transfer.bin"

run m7

to start the example.

Output
Node A
********* FLEXCAN PingPong Buffer Example *********

 Message format: Standard (11 bit id)

 Node B Message buffer 1 to 4 used as Rx queue 1.

 Node B Message buffer 5 to 8 used as Rx queue 2.

 Node A Message buffer 8 used as Tx.

Please select local node as A or B:

Note: Node B should start first.

Node:A

Node B

Please select local node as A or B:

Note: Node B should start first.

FreeRTOS examples

48 FreeRTOS on FSiMX8MP Boards

Node:B

Start to Wait data from Node A

Read Rx MB from Queue 1.

Rx MB ID: 0x321, Rx MB data: 0x0, Time stamp: 20971

Rx MB ID: 0x321, Rx MB data: 0x1, Time stamp: 56187

Rx MB ID: 0x321, Rx MB data: 0x2, Time stamp: 56867

Rx MB ID: 0x321, Rx MB data: 0x3, Time stamp: 57547

Read Rx MB from Queue 2.

Rx MB ID: 0x321, Rx MB data: 0x4, Time stamp: 56187

Rx MB ID: 0x321, Rx MB data: 0x5, Time stamp: 56867

Rx MB ID: 0x321, Rx MB data: 0x6, Time stamp: 57547

Rx MB ID: 0x321, Rx MB data: 0x7, Time stamp: 57547

Wait Node A to trigger the next 8 messages!

8.4.3 flexcan

interrupt_transfer

Description
This example demonstrates the CAN FD functionality. Two boards are connected via CAN
High and CAN Low while one board acts as node A and the other as node B. Node A sends a
CAN message to node B when a key is pressed.

Modifications made
None.
Changes needed

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.2
SPI_B_MISO J1_58 J11_5
SPI_B_MOSI J1_60 J11_6
SPI_B_SCLK J1_62 J11_3
SPI_B_SS0 J1_64 J11_4
GND --- J11_11

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3
CAN1H - J7_4
CAN1L - J7_3

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 49

Execute binary

Run

setenv m7_file "flexcan_interrupt_transfer.bin"

run m7

to start the example.

FreeRTOS examples

50 FreeRTOS on FSiMX8MP Boards

Output
Node A

********* FLEXCAN Interrupt EXAMPLE *********

 Message format: Standard (11 bit id)

 Message buffer 9 used for Rx.

 Message buffer 8 used for Tx.

 Interrupt Mode: Enabled

 Operation Mode: TX and RX --> Normal

Please select local node as A or B:

Note: Node B should start first.

Node:a

Press any key to trigger one-shot transmission

Rx MB ID: 0x123, Rx MB data: 0x0, Time stamp: 8877

Press any key to trigger the next transmission!

Rx MB ID: 0x123, Rx MB data: 0x1, Time stamp: 32459

Press any key to trigger the next transmission!

Node B

********* FLEXCAN Interrupt EXAMPLE *********

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 51

 Message format: Standard (11 bit id)

 Message buffer 9 used for Rx.

 Message buffer 8 used for Tx.

 Interrupt Mode: Enabled

 Operation Mode: TX and RX --> Normal

Please select local node as A or B:

Note: Node B should start first.

Node:b

Start to Wait data from Node A

Rx MB ID: 0x321, Rx MB data: 0x0, Time stamp: 5759

Wait Node A to trigger the next transmission!

Rx MB ID: 0x321, Rx MB data: 0x1, Time stamp: 57276

Wait Node A to trigger the next transmission!

loopback

Description
This example demonstrates the CAN FD functionality. The board connects the RX and TX
message buffers internally.

FreeRTOS examples

52 FreeRTOS on FSiMX8MP Boards

Modifications made
None.
Changes needed

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.2
SPI_B_MISO J1_58 J11_5
SPI_B_MOSI J1_60 J11_6
SPI_B_SCLK J1_62 J11_3
SPI_B_SS0 J1_64 J11_4
GND --- J11_11

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3
CAN1H - J7_4
CAN1L - J7_3

Execute binary

Run

setenv m7_file "flexcan_loopback.bin"

run m7

to start the example.

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 53

Output
==FlexCAN loopback functional example -- Start.==

Send message from MB8 to MB9

tx word0 = 0x11223344

tx word1 = 0x55667788

Received message from MB9

rx word0 = 0x11223344

rx word1 = 0x55667788

==FlexCAN loopback functional example -- Finish.==

loopback_transfer

Description
This example demonstrates the CAN FD functionality. The board connects the RX and TX
message buffers internally.

Modifications made
None.
Changes needed

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.2
SPI_B_MISO J1_58 J11_5
SPI_B_MOSI J1_60 J11_6
SPI_B_SCLK J1_62 J11_3
SPI_B_SS0 J1_64 J11_4
GND --- J11_11

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3
CAN1H - J7_4
CAN1L - J7_3

Execute binary
Run

setenv m7_file "flexcan_loopback_transfer.bin"

FreeRTOS examples

54 FreeRTOS on FSiMX8MP Boards

run m7

to start the example.

Output
==FlexCAN loopback example -- Start.==

Send message from MB8 to MB9

tx word0 = 0x11223344

tx word1 = 0x55667788

Received message from MB9

rx word0 = 0x11223344

rx word1 = 0x55667788

==FlexCAN loopback example -- Finish.==

ping_pong_buffer_transfer

Description
This example demonstrates the CAN FD functionality. Two boards are connected via CAN
High and CAN Low while one board acts as node A and the other as node B. Node A sends a
defined number of CAN messages to node B put in by the user.

Modifications made
None.
Changes needed

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.2
SPI_B_MISO J1_58 J11_5
SPI_B_MOSI J1_60 J11_6
SPI_B_SCLK J1_62 J11_3
SPI_B_SS0 J1_64 J11_4
GND --- J11_11

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3
CAN1H - J7_4
CAN1L - J7_3

Execute binary

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 55

Run

setenv m7_file "flexcan_ping_pong_buffer_transfer.bin"

run m7

to start the example.

Output
Node A
********* FLEXCAN PingPong Buffer Example *********

 Message format: Standard (11 bit id)

 Node B Message buffer 1 to 4 used as Rx queue 1.

 Node B Message buffer 5 to 8 used as Rx queue 2.

 Node A Message buffer 8 used as Tx.

Please select local node as A or B:

Note: Node B should start first.

Node:A

FreeRTOS examples

56 FreeRTOS on FSiMX8MP Boards

Node B

Please select local node as A or B:

Note: Node B should start first.

Node:B

Start to Wait data from Node A

Read Rx MB from Queue 1.

Rx MB ID: 0x321, Rx MB data: 0x0, Time stamp: 20971

Rx MB ID: 0x321, Rx MB data: 0x1, Time stamp: 56187

Rx MB ID: 0x321, Rx MB data: 0x2, Time stamp: 56867

Rx MB ID: 0x321, Rx MB data: 0x3, Time stamp: 57547

Read Rx MB from Queue 2.

Rx MB ID: 0x321, Rx MB data: 0x4, Time stamp: 56187

Rx MB ID: 0x321, Rx MB data: 0x5, Time stamp: 56867

Rx MB ID: 0x321, Rx MB data: 0x6, Time stamp: 57547

Rx MB ID: 0x321, Rx MB data: 0x7, Time stamp: 57547

Wait Node A to trigger the next 8 messages!

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 57

8.4.4 gpio

led_output

Description

The GPIO Example project is a demonstration program that uses the KSDK software to
manipulate the general-purpose outputs. The example is supported by the set, clear, and
toggle write-only registers for each port output data register. The example take turns to shine
the LED.

Modifications made
None.

Changes needed
Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3

SPI_B_MOSI / LED J1_60 J11_6

Execute binary

Run

setenv m7_file "igpio_led_output.bin"

run m7

to start the example.
Output
When the example runs successfully, the following message is displayed in the terminal:

GPIO Driver example

 The LED is blinking.

FreeRTOS examples

58 FreeRTOS on FSiMX8MP Boards

8.4.5 gpt

gpt capture

The example can’t be ported at the moment because no reasonable pin is available.

gpt_timer

Description
The gpt_timer project is a simple demonstration program of the SDK GPT driver. It sets up the
GPT hardware block to trigger a periodic interrupt after every 1 second. When the GPT
interrupt is triggered a message a printed on the UART terminal.

Modifications made
None.

Changes needed
None

Execute binary

Run

setenv m7_file "gpt_timer.bin"

run m7

to start the example.

Output
When the example runs successfully, the following message is displayed in the terminal:

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 59

Press any key to start the example

s

Starting GPT timer ...

 GPT interrupt is occurred !

 GPT interrupt is occurred !

 GPT interrupt is occurred !

 GPT interrupt is occurred !

 .

 .

 .

 GPT interrupt is occurred !

 .

 .

 .

FreeRTOS examples

60 FreeRTOS on FSiMX8MP Boards

8.4.6 i2c

interrupt_b2b_transfer / Master

Description

The i2c_interrupt_b2b_transfer_master example shows how to use i2c driver as master to do
board to board transfer with interrupt:

In this example, one i2c instance acts as the master and another i2c instance on the other
board as slave. The master sends a piece of data to the slave, and receives a piece of data
from the slave. This example checks if the data received from the slave is correct.

Modifications made
PCOREMX8MM: Changed I2C port to I2C1
PCOREMX8MX: Changed I2C port to I2C4

Changes needed

Function PCOREMX8MM Rev 1.3 PCOREMX8MX Rev 1.2 BBDSI Rev 1.3
I2C_A_SCL J1_4 J11_16
I2C_A_SDA J1_6 J11_17
GND --- J11_11

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3
I2C_A_SCL J1_4 J11_16
I2C_A_SDA J1_6 J11_17
GND --- J11_11

Execute binary

Run

setenv m7_file "ii2c_interrupt_b2b_transfer_master.bin"

run m7

to start the example.

Output
When the example runs successfully, following information can be seen on the terminal:

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 61

When the demo runs successfully, the following message is
displayed in the terminal:

I2C board2board interrupt example -- Master transfer.

Master will send data :

0x 0 0x 1 0x 2 0x 3 0x 4 0x 5 0x 6 0x 7

0x 8 0x 9 0x a 0x b 0x c 0x d 0x e 0x f

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

0x18 0x19 0x1a 0x1b 0x1c 0x1d 0x1e 0x1f

Receive sent data from slave :

0x 0 0x 1 0x 2 0x 3 0x 4 0x 5 0x 6 0x 7

0x 8 0x 9 0x a 0x b 0x c 0x d 0x e 0x f

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

0x18 0x19 0x1a 0x1b 0x1c 0x1d 0x1e 0x1f

End of I2C example .

FreeRTOS examples

62 FreeRTOS on FSiMX8MP Boards

interrupt_b2b_transfer / Slave

Description

The ii2c_interrupt_b2b_transfer_slave example shows how to use i2c driver as slave to do
board to board transfer with interrupt:

In this example, one i2c instance as slave and another i2c instance on the other board as
master. Master sends a piece of data to slave, and receive a piece of data from slave. This
example checks if the data received from slave is correct.

Modifications made
PCOREMX8MM: Changed I2C port to I2C1
PCOREMX8MX: Changed I2C port to I2C4

Changes needed
Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3

I2C_A_SCL J1_4 J11_16
I2C_A_SDA J1_6 J11_17
GND --- J11_11

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3
I2C_A_SCL J1_4 J11_16
I2C_A_SDA J1_6 J11_17
GND --- J11_11

Execute binary

Run

setenv m7_file "ii2c_interrupt_b2b_transfer_slave.bin"

run m7

to start the example.

Output
When the demo runs successfully, the following message is displayed in the terminal:

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 63

I2C board2board interrupt example -- Slave transfer.

Slave received data :

0x 0 0x 1 0x 2 0x 3 0x 4 0x 5 0x 6 0x 7

0x 8 0x 9 0x a 0x b 0x c 0x d 0x e 0x f

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

0x18 0x19 0x1a 0x1b 0x1c 0x1d 0x1e 0x1f

End of I2C example .

FreeRTOS examples

64 FreeRTOS on FSiMX8MP Boards

polling_b2b_transfer / Master

Description

The ii2c_polling_b2b_transfer_master example shows how to use i2c driver as master to do
board to board transfer using polling method:

In this example, one i2c instance as master and another i2c instance on the other board as
slave. Master sends a piece of data to slave, and receive a piece of data from slave. This
example checks if the data received from slave is correct.

Modifications made
PCOREMX8MM: Changed I2C port to I2C1
PCOREMX8MX: Changed I2C port to I2C4

Changes needed
Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3

I2C_A_SCL J1_4 J11_16
I2C_A_SDA J1_6 J11_17
GND --- J11_11

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3
I2C_A_SCL J1_4 J11_16
I2C_A_SDA J1_6 J11_17
GND --- J11_11

Execute binary

Run

setenv m7_file "ii2c_polling_b2b_transfer_master.bin"

run m7

to start the example.

Output
When the demo runs successfully, the following message is displayed in the terminal:

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 65

I2C board2board polling example -- Master transfer.

Master will send data :

0x 0 0x 1 0x 2 0x 3 0x 4 0x 5 0x 6 0x 7

0x 8 0x 9 0x a 0x b 0x c 0x d 0x e 0x f

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

0x18 0x19 0x1a 0x1b 0x1c 0x1d 0x1e 0x1f

Receive sent data from slave :

0x 0 0x 1 0x 2 0x 3 0x 4 0x 5 0x 6 0x 7

0x 8 0x 9 0x a 0x b 0x c 0x d 0x e 0x f

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

0x18 0x19 0x1a 0x1b 0x1c 0x1d 0x1e 0x1f

End of I2C example .

FreeRTOS examples

66 FreeRTOS on FSiMX8MP Boards

polling_b2b_transfer / Slave

Description

The i2c_polling_b2b_transfer_slave example shows how to use i2c driver as slave to do board
to board transfer with a polling master:

In this example, one i2c instance as slave and another i2c instance on the other board as
master. Master sends a piece of data to slave, and receive a piece of data from slave. This
example checks if the data received from slave is correct.

Modifications made
PCOREMX8MM: Changed I2C port to I2C1
PCOREMX8MX: Changed I2C port to I2C4

Changes needed
Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3

I2C_A_SCL J1_4 J11_16
I2C_A_SDA J1_6 J11_17
GND --- J11_11

Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3
I2C_A_SCL J1_4 J11_16
I2C_A_SDA J1_6 J11_17
GND --- J11_11

Execute binary

Run

setenv m7_file "ii2c_polling_b2b_transfer_slave.bin"

run m7

to start the example.

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 67

Output
When the demo runs successfully, the following message is displayed in the terminal:

I2C board2board polling example -- Slave transfer.

Slave received data :

0x 0 0x 1 0x 2 0x 3 0x 4 0x 5 0x 6 0x 7

0x 8 0x 9 0x a 0x b 0x c 0x d 0x e 0x f

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

0x18 0x19 0x1a 0x1b 0x1c 0x1d 0x1e 0x1f

End of I2C example .

FreeRTOS examples

68 FreeRTOS on FSiMX8MP Boards

8.4.7 pdm

Hasn’t been ported yet.

8.4.8 pwm

Description
The PWM example shows how to setup and generate a PWM signal. The frequency and duty
cycle can be programmed. When booting the A53 and using the default configuration set by
the function PWM_GetDefaultConfig(), the signal will be gated off by the Power State
Coordination Interface (PSCI) to save energy. To counter this behavior some modifications
have been made to keep the signal active.
Modifications made
pwm.c:

 pwmConfig.enableStopMode = true;

 pwmConfig.enableDozeMode = true;

 pwmConfig.enableWaitMode = true;

 pwmConfig.enableDebugMode = true;

Changes needed
Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3

PWM J2_63 J11_34

Execute binary
First run

setenv m7_file "ipwm.bin"

run m7

Output
The following message is displayed in the terminal window:

PWM driver example

On an oscilloscope you should see clear rectangular pulses. Alternatively, a LED can be used.
It should visibly flash with a relatively high frequency.

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 69

8.4.9 rdc

Description
The RDC example shows how to control the peripheral and memory region access policy using
RDC and RDC_SEMA42.

Modifications made
None.

Changes needed
None
Execute binary

First run

setenv m7_file "rdc.bin"

run m7

Output

The log below is shown in the terminal window:
RDC Example:

RDC Peripheral access control

RDC Peripheral access control with SEMA42

RDC memory region access control

RDC Example Succes

FreeRTOS examples

70 FreeRTOS on FSiMX8MP Boards

8.4.10 sai

interrupt_transfer

Hasn’t been ported yet.

sdma_transfer

Hasn’t been ported yet.

FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 71

8.4.11 sdma

memory_to_memory

Description

The EDMA memory to memory example is a simple demonstration program that uses the SDK
software. It executes one shot transfer from source buffer to destination buffer using the SDK
EDMA drivers. The purpose of this example is to show how to use the EDMA and to provide a
simple example for debugging and further development.

Modifications made
None.

Changes needed
To use the example, please mind the necessary changes.
Execute binary

First run

setenv m7_file "sdma_memory_to_memory.bin"

run m7

Output

When the example runs successfully, you can see the similar information from the terminal as
below.
SDMA memory to memory transfer example begin.

Destination Buffer:

0 0 0 0

SDMA memory to memory transfer example finish.

Destination Buffer:

1 2 3 4

FreeRTOS examples

72 FreeRTOS on FSiMX8MP Boards

scatter_gather

Description

The SDMA scatter gather example is a simple demonstration program that uses the SDK
software. It executes several shots transfer from source buffer to destination buffer using the
SDK SDMA drivers. The purpose of this example is to show how to use the SDMA and to
provide a scatter gather example for debugging and further development.

Modifications made
None.

Changes needed
To use the example, please mind the necessary changes.
Execute binary

First run

setenv m7_file "sdma_scatter_gather.bin"

run m7

Output

When the example runs successfully, you can see the similar information from the terminal as
below.
SDMA scatter_gather transfer example begin.

Destination Buffer:

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

SDMA scatter_gather transfer example finish.

Destination Buffer:

0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15

~~~~~~~~~~~~~~~~~~~~~



FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 73

8.4.12 sema4

Description

The sema4 uboot example shows how to use SEMA4 driver to lock and unlock a sema gate, 
the notification IRQ is also demonstrated in this example. This example should work together 
with uboot. This example runs on Cortex-M core, the uboot runs on the Cortex-A core.

Modifications made
None.

Changes needed
None
Execute binary

First run

setenv m7_file "sema4_uboot.bin"

run m7

Output

Follow the output log, lock and unlock the sema4 gate in uboot. The whole log:
SEMA4 uboot example start

Lock sema4 gate in uboot using:

 > mw.b 0x30ac0000 1 1

Unlock sema4 gate in uboot using:

 > mw.b 0x30ac0000 0 1

SEMA4 uboot example success



FreeRTOS examples

74 FreeRTOS on FSiMX8MP Boards

8.4.13 tmu

tmu_2_monitor_threshold

Description
The TMU example shows how to configure TMU register to monitor and report the temperature 
from the temperature measurement site located on the chip.
TMU has access to temperature measurement site located on the chip. It can signal an alarm 
if a programmed threshold is ever exceeded.

Modifications made
None.

Changes needed
None
Execute binary

First run

setenv m7_file "tmu_2_monitor_threshold.bin"

run m7

Output

When the example runs successfully, you will see the temperature output from the terminal. 
If the pre-set threshold is reached, you will see the average temperature.
TMU monitor threshold example.

Initialization average temperature is positive 40 celsius degree

Average temperature is positive 50 celsius degree

High temperature average threshold to be reached.



FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 75

tmu_2_temperature_polling

Description

The TMU example shows how to configure TMU register to monitor and report the temperature 
from the temperature measurement site located on the chip.

Modifications made
None.

Changes needed
None
Execute binary

First run

setenv m7_file "tmu_2_temperature_polling.bin"

run m7

Output

When the example runs successfully, you will see the temperature output from the terminal.
TMU temperature polling example.

Average temperature is positive 44 celsius degree

Average temperature is positive 44 celsius degree

Average temperature is positive 44 celsius degree

Average temperature is positive 46 celsius degree

Average temperature is positive 46 celsius degree

Average temperature is positive 48 celsius degree

Average temperature is positive 48 celsius degree

Average temperature is positive 48 celsius degree



FreeRTOS examples

76 FreeRTOS on FSiMX8MP Boards

8.4.14 uart

auto_baudrate_detect

Description

The uart_auto_baudrate_detect example shows how to use uart auto baud rate detect feature: 
In this example, one uart instance connect to PC through uart. First, we should send characters 
a or A to board. The boars will set baud rate automatic. After baud rate has set, the board will 
send back all characters that PC send to the board.

Modifications made
None.

Changes needed
None
Execute binary

First run

setenv m7_file "iuart_auto_baudrate_detect.bin"

run m7

Output

Set any baud rate in your terminal, and send character a or A to board, then  
When the demo runs successfully, the log would be seen on the debug terminal like:
UART has detect one character A

Baud rate has been set automatic!

Board will send back received characters



FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 77

idle_detect_sdma_transfer

Description

The uart_idle_detect_sdma example shows how to use uart driver in sdma way:

In this example, one uart instance connect to PC through uart, the board will send back all 
characters that PC send to the board.

Uart will receive 8 characters every time, but if the character is less then 8, the idle line interrupt 
will generate, and abort the SDMA receive operation, and send out the received characters.

Modifications made
None.

Changes needed
To use the example, please mind the necessary changes.
Execute binary

First run

setenv m7_file "iuart_idle_detect_sdma_transfer.bin"

run m7

Output

When the demo runs successfully, the log would be seen on the debug terminal like:
Uart sdma transfer example!

Uart will receive 8 charactes every time, if less characters were 
received, 

Uart will generate the idle line detect interrupt, SDMA receive 
operation will be aborted.

Board will send the received characters out.

Now please input:



FreeRTOS examples

78 FreeRTOS on FSiMX8MP Boards

hardware_flow_control

Hasn’t been ported yet.

interrupt

Description

The uart_functioncal_interrupt example shows how to use uart driver functional API to receive 
data with interrupt method:

In this example, one uart instance connect to PC through uart, the board will send back all 
characters that PC send to the board.

Modifications made
None.

Changes needed
None
Execute binary

First run

setenv m7_file "iuart_interrupt.bin"

run m7

Output

When the demo runs successfully, the log would be seen on the debug terminal like:
Uart functional interrupt example

Board receives characters then sends them out

Now please input:



FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 79

interrupt_rb_transfer

Description

The uart_interrupt_ring_buffer example shows how to use uart driver in interrupt way with RX 
ring buffer enabled:

In this example, one uart instance connect to PC through uart, the board will send back all 
characters that PC send to the board.

The example echoes every 8 characters, so input 8 characters every time.

Modifications made
None.

Changes needed
None
Execute binary

First run

setenv m7_file "iuart_interrupt_rb_transfer.bin"

run m7

Output

When the demo runs successfully, the log would be seen on the debug terminal like:
UART RX ring buffer example

Send back received data

Echo every 8 bytes



FreeRTOS examples

80 FreeRTOS on FSiMX8MP Boards

interrupt_transfer

Description

The uart_interrupt example shows how to use uart driver in interrupt way:

In this example, one uart instance connect to PC through uart, the board will send back all 
characters that PC send to the board.

The example echoes every 8 characters, so input 8 characters every time.

Modifications made
None.

Changes needed
None
Execute binary

First run

setenv m7_file "iuart_interrupt_transfer.bin"

run m7

Output

When the demo runs successfully, the log would be seen on the debug terminal like:
Uart interrupt example

Board receives 8 characters then sends them out

Now please input:



FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 81

polling

Description

The uart_polling example shows how to use uart driver in polling way:

In this example, one uart instance connect to PC through uart, the board will send back all 
characters that PC send to the board.

Modifications made
None.

Changes needed
None
Execute binary

First run

setenv m7_file "iuart_polling.bin"

run m7

Output

When the demo runs successfully, the log would be seen on the debug terminal like:
Uart polling example

Board will send back received characters



FreeRTOS examples

82 FreeRTOS on FSiMX8MP Boards

sdma_transfer

Description

The uart_sdma example shows how to use uart driver in sdma way:

In this example, one uart instance connect to PC through uart, the board will send back all 
characters that PC send to the board.

The example echoes every 8 characters, so input 8 characters every time.

Modifications made
None.

Changes needed
To use the example, please mind the necessary changes.
Execute binary

First run

setenv m7_file “iuart_sdma_transfer.bin"

run m7

Output

When the demo runs successfully, the log would be seen on the debug terminal like:
Uart interrupt example

Board receives 8 characters then sends them out

Now please input:

When you input 8 characters, the system will echo it by UART.



FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 83

8.4.15 wdog

Description

The WDOG Example project is to demonstrate usage of the KSDK wdog driver. In this 
example,implemented to test the wdog.

Please notice that because WDOG control registers are write-once only. And for the field WDT, 
once software performs a write "1" operation to this bit, it can not be reset/cleared until the next 
POR, this bit does not get reset/ cleared due to any system reset. So the WDOG_Init function 
can be called  only once after power reset when WDT set, and the WDOG_Disable function 
can  be called only once after reset.

Modifications made
None.

Changes needed
None
Execute binary
First run

setenv m7_file "wdog01.bin"

run m7

Output
When the demo runs successfully, the log would be seen on the debug terminal like:
******** System Start ********

System reset by: Power On Reset!

- 3.Test the WDOG refresh function by using interrupt.

--- wdog Init done---

WDOG has be refreshed!

WDOG has be refreshed!

WDOG has be refreshed!

WDOG has be refreshed!

WDOG has be refreshed!

...



FreeRTOS examples

84 FreeRTOS on FSiMX8MP Boards

8.5 mulitcore_examples

8.5.1 rpmsg_lite_pingpong_rtos_linux_remote

Description
The Multicore RPMsg-Lite pingpong RTOS project is a simple demonstration program that 
uses the MCUXpresso SDK software and the RPMsg-Lite library and shows how to implement 
the inter-core communicaton between cores of the multicore system. The primary core 
releases the secondary core from the reset and then the inter-core communication is 
established. Once the RPMsg is initialized and endpoints are created the message exchange 
starts, incrementing a virtual counter that is part of the message payload. The message 
pingpong finishes when the counter reaches the value of 100. Then the RPMsg-Lite is 
deinitialized and the procedure of the data exchange is repeated again.

Shared memory usage
This multicore example uses the shared memory for data exchange. The shared memory 
region is defined and the size can be adjustable in the linker file. The shared memory region 
start address and the size have to be defined in linker file for each core equally. The shared 
memory start address is then exported from the linker to the application.

Modifications made
board.h
#define VDEV0_VRING_BASE (0x50000000U)

Changes needed
Adjust the RPMsg addresses according to the RAM size.
Execute binary

First run

setenv m7_file "rpmsg_lite_pingpong_rtos_linux_remote.bin"

run m7

then wait for Linux OS to finish booting. Log in, and type
modprobe imx_rpmsg_pingpong

to load the pingpong Linux side module.



FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 85

Output

RPMSG Ping-Pong FreeRTOS RTOS API Demo...

RPMSG Share Base Addr is 0xb5000000

During boot the Kernel,the ARM Cortex-M7 terminal displays the following information:
Link is up!

Nameservice announce sent.

After the Linux RPMsg pingpong module was installed, the ARM Cortex-M7 terminal displays 
the following information:
Waiting for ping...

Sending pong...

Waiting for ping...

Sending pong...

Waiting for ping...

Sending pong...

......

Waiting for ping...

Sending pong...

Ping pong done, deinitializing...

Looping forever...

The Cortex-A terminal displays the following information:
get 1 (src: 0x1e)

get 3 (src: 0x1e)

......

get 99 (src: 0x1e)

get 101 (src: 0x1e)



FreeRTOS examples

86 FreeRTOS on FSiMX8MP Boards

8.5.2 rpmsg_lite_str_echo_rtos

Description

The Multicore RPMsg-Lite string echo project is a simple demonstration program that uses the 
MCUXpresso SDK software and the RPMsg-Lite library and shows how to implement the inter-
core communicaton between cores of the multicore system.

It works with Linux RPMsg master peer to transfer string content back and forth. The name 
service handshake is performed first to create the communication channels. Next, Linux OS 
waits for user input to the RPMsg virtual tty. Anything which is received is sent to M7. M7 
displays what is received, and echoes back the same message as an acknowledgement. The 
tty reader on the Linux side can get the message, and start another transaction. The demo 
demonstrates RPMsg’s ability to send arbitrary content back and forth.

The maximum message length supported by RPMsg is now 496 bytes. String longer than 496 
will be divided by virtual tty into several messages.

Shared memory usage 

This multicore example uses the shared memory for data exchange. The shared memory 
region is defined and the size can be adjustable in the linker file. The shared memory region 
start address and the size have to be defined in linker file for each core equally. The shared 
memory start address is then exported from the linker to the application.

Modifications made
board.h
#define VDEV0_VRING_BASE (0x50000000U)

Changes needed
Adjust the RPMsg addresses according to the RAM size.
Execute binary

First run

setenv m7_file "rpmsg_lite_str_echo_rtos.bin"

run m7

then wait for Linux OS to finish booting. Log in, and type
modprobe imx_rpmsg_tty

to load the pingpong Linux side module.

Run
echo test > /dev/ttyRPMSG30

to show the output of the RPMsg-Lite str echo demo in the terminal window



FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 87

Output

RPMSG String Echo FreeRTOS RTOS API Demo...

Nameservice sent, ready for incoming messages...

After the Linux RPMsg tty module was installed, the ARM Cortex-M7 terminal displays the 
following information:
Get Message From Master Side : "hello world!" [len : 12]

After the user  write into the ttyRPMSG –device the Cortex-M7 terminal displays the following 
information:
Get Message From Master Side : "test" [len : 4]

Get New Line From Master Side



FreeRTOS examples

88 FreeRTOS on FSiMX8MP Boards

8.6 rtos_examples

8.6.1 freertos_ecspi

Description

The freertos_ecspi_loopback demo shows how the ecspi do a loopback transfer internally in 
FreeRTOS. The ECSPI connects the transmitter and receiver sections internally, and the data 
shifted out from the most-significant bit of the shift register is looped back into the least-
significant bit of the Shift register. In this way, a self-test of the complete transmit/receive path 
can be made. The output pins are not affected, and the input pins are ignored.

Modifications made
None.

Changes needed
None.
Execute binary

Run 

setenv m7_file "freertos_ecspi_loopback.bin"

run m7

Output

If the demo run successfully, the below log will be print in the terminal window:

***FreeRTOS ECSPI Loopback Demo***

This demo is a loopback transfer test for ECSPI.

The ECSPI will connect the transmitter and receiver sections 
internally.

So, there is no need to connect the MOSI and MISO pins.

FreeRTOS ECSPI loopback test pass!



FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 89

8.6.2 freertos_event

Description

This document explains the freertos_event example. It shows how task waits for an event 
(defined set of bits in event group). This event can be set by any other process or interrupt in 
the system.

The example application creates three tasks. Two write tasks write_task_1 and write_task_2 
continuously setting event bit 0 and bit 1.

Read_task is waiting for any event bit and printing actual state on console. Event bits are 
automatically cleared after read task is entered.

Three possible states can occurre:

Both bits are set.

Bit B0 is set.

Bit B1 is set.

Modifications made
None

Changes needed
None
Execute binary

Run 

setenv m7_file "freertos_event.bin"

run m7



FreeRTOS examples

90 FreeRTOS on FSiMX8MP Boards

Output

After the board is flashed the Tera Term will start printing the state of event bits.

Bit B1 is set.

Bit B0 is set.

Bit B1 is set.

Bit B0 is set.

Bit B1 is set.

. . .



FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 91

8.6.3 freertos_generic

Description

This document explains the freertos_generic example. It is based on code FreeRTOS 
documentation from http://www.freertos.org/Hardware-independent-RTOS-example.html. It 
shows combination of several tasks with queue, software timer, tick hook and semaphore.

The example application creates three tasks. The prvQueueSendTask periodically sending 
data to xQueue queue. The prvQueueReceiveTask is waiting for incoming message and 
counting number of received messages. Task prvEventSemaphoreTask is waiting for 
xEventSemaphore semaphore given from vApplicationTickHook. Tick hook give semaphore 
every 500 ms.

Other hook types used for RTOS and resource statistics are also demonstrated in example:

 vApplicationIdleHook

 vApplicationStackOverflowHook

 vApplicationMallocFailedHook

Modifications made
None.

Changes needed
None

Execute binary

Run 

setenv m7_file "freertos_generic.bin"

run m7



FreeRTOS examples

92 FreeRTOS on FSiMX8MP Boards

Output

After the board is flashed the Tera Term will start periodically printing the state of generic 
example.

Event task is running.

Receive message counter: 1.

Receive message counter: 2.

Receive message counter: 3.

Receive message counter: 4.

Receive message counter: 5.

Receive message counter: 6.

Receive message counter: 7.

. . .



FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 93

8.6.4 freertos_hello

Description

The Hello World project is a simple demonstration program that uses the SDK UART driver in 
combination with FreeRTOS. The purpose of this demo is to show how to use the debug 
console and to provide a simple project for debugging and further development.

The example application creates one task called hello_task. This task print "Hello world." 
Message via debug console utility and suspend itself.

Modifications made
None.

Changes needed
None

Execute binary

Run 

setenv m7_file "freertos_hello.bin"

run m7

Output

After the board is flashed the Tera Term will print "Hello world" message on terminal.

Hello world.



FreeRTOS examples

94 FreeRTOS on FSiMX8MP Boards

8.6.5 freertos_i2c

Description
This example shows how to send and receive data board to board via the I2C driver in            
FreeRTOS. One Board acts as the master and the other as the slave. FreeRTOS tasks will be 
created according to the role (Master or Slave) of the board. Single board functionality isn’t yet 
implemented by NXP.

Modifications made
None.

Changes needed
Function PCOREMX8MP Rev 1.0 BBDSI Rev 1.3

I2C_A_SCL J1_4 J11_16
I2C_A_SDA J1_6 J11_17
GND --- J11_11

Changes needed
If device using than master, set the following line in source code freertos_i2c.c
#define I2C_MASTER_SLAVE isMASTER
If device using than slave, set the following line in source code freertos_i2c.c
#define I2C_MASTER_SLAVE isSLAVE

Execute binary

Run on the device as slave

setenv m7_file "freertos_i2c_slave.bin"

run m7

Run on the device as master

setenv m7_file "freertos_i2c_master.bin"

run m7



FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 95

Output

Upon successful execution, the terminal window displays the following message:
Master side

==FreeRTOS I2C example start.==

This example use two boards to connect with one as master and 
another as slave.

Master will send data : 

0x 0  0x 1  0x 2  0x 3  0x 4  0x 5  0x 6  0x 7

…

0x18  0x19  0x1a  0x1b  0x1c  0x1d  0x1e 0x1f

Master received data : 

<Same as above>

End of FreeRtos I2C example.

Slave side

==FreeRTOS I2C example start.==

This example use two boards to connect with one as master and 
another as slave.

I2C slave transfer completed successfully.

Slave received data : 

<Same as above>

End of FreeRTOS I2C example.



FreeRTOS examples

96 FreeRTOS on FSiMX8MP Boards

8.6.6 freertos_mutex

Description

This document explains the freertos_mutex example. It shows how mutex manage access to 
common resource (terminal output).

The example application creates two identical instances of write_task. Each task will lock the 
mutex before printing and unlock it after printing to ensure that the outputs from tasks are not 
mixed together.

The test_task accept output message during creation as function parameter. Output message 
have two parts. If xMutex is unlocked, the write_task_1 acquire xMutex and print first part of 
message. Then rescheduling is performed. In this moment scheduler check if some other task 
could run, but second task write_task+_2 is blocked because xMutex is already locked by first 
write task. The first write_task_1 continue from last point by printing of second message part. 
Finaly the xMutex is unlocked and second instance of write_task_2 is executed.

Modifications made
None.

Changes needed
None
Execute binary

Run 

setenv m7_file "freertos_mutex.bin"

run m7

Output

After the board is flashed the Tera Term will start periodically printing strings synchronized by
mutex.

"ABCD | EFGH"

"1234 | 5678"

"ABCD | EFGH"

"1234 | 5678"

…



FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 97

8.6.7 freertos_queue

Description

This document explains the freertos_queue example. This example introduce simple logging 
mechanism based on message passing.

Example could be devided in two parts. First part is logger. It contain three tasks: 

log_add().....Add new message into the log. Call xQueueSend function to pass new message 
into message 

queue.log_init()....Initialize logger (create logging task and message queue log_queue).

log_task()....Task responsible for printing of log output.

Second part is application of this simple logging mechanism. Each of two tasks write_task_1 
and write_task_2 print 5 messages into log.

Modifications made
None.

Changes needed
None
Execute binary

Run 

setenv m7_file "freertos_queue.bin"

run m7

Output

After the board is flashed the Tera Term will show debug console output.

Log 0: Task1 Message 0

Log 1: Task2 Message 0

Log 2: Task1 Message 1

Log 3: Task2 Message 1

. . .

Log9:  Task2 Message 4



FreeRTOS examples

98 FreeRTOS on FSiMX8MP Boards

8.6.8 freertos_sem

Description

This document explains the freertos_sem example, what to expect when running it and a brief 
introduction to the API. The freertos_sem example code shows how semaphores works. Two 
different tasks are synchronized in bilateral rendezvous model.

The example uses four tasks. One producer_task and three consumer_tasks. The 
producer_task starts by creating of two semaphores (xSemaphore_producer and 
xSemaphore_consumer). These semaphores control access to virtual item. The 
synchronization is based on bilateral rendezvous pattern. Both of consumer and producer must 
be prepared to enable transaction.

Modifications made
None.

Changes needed
None
Execute binary

Run 

setenv m7_file "freertos_sem.bin"

run m7



FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 99

Output

After the board is flashed the Tera Term will show debug console output.

Producer_task created.

Consumer_task 0 created.

Consumer_task 1 created.

Consumer_task 2 created.

Consumer number: 0

Consumer 0 accepted item.

Consumer number: 1

Consumer number: 2

Producer released item.

Consumer 0 accepted item.

Producer released item.

Consumer 1 accepted item.

Producer released item.

Consumer 2 accepted item.

. . .



FreeRTOS examples

100 FreeRTOS on FSiMX8MP Boards

8.6.9 freertos_swtimer

Description

This document explains the freertos_swtimer example. It shows usage of software timer and 
its callback.

The example application creates one software timer SwTimer. The timer’s callback 
SwTimerCallback is periodically executed and text “Tick.” is printed to terminal.

Modifications made
None.

Changes needed
None
Execute binary

Run 

setenv m7_file "freertos_swtimer.bin"

run m7

Output

After the board is flashed the Tera Term will show output message.

Tick.

Tick.

Tick.

. . .



FreeRTOS examples

FreeRTOS on FSiMX8MP Boards 101

8.6.10 freertos_tickless

Description

This document explains the freertos_tickless example. It shows how the CPU enters the sleep 
mode and then it is woken up either by expired time delay using low power timer module or by 
external interrupt caused by a user defined button.

Modifications made
None.

Changes needed
None
Execute binary

Run 

setenv m7_file "freertos_tickless.bin"

run m7

Output

After the board is flashed the Tera Term will show debug console output.

0

5000

10000

15000

20000

25000

30000

. . .



FreeRTOS examples

102 FreeRTOS on FSiMX8MP Boards

8.6.11 freertos_uart

Description

The UART example for FreeRTOS demonstrates the possibility to use the UART driver in the 
RTOS. The example uses single instance of UART IP and writes string into, then reads back 
chars. After every 4B received, these are sent back on UART.

Modifications made
None.

Changes needed
None
Execute binary

Run 

setenv m7_file "freertos_uart.bin"

run m7

Output

You will see the welcome string printed out on the console. You can send characters to the 
console back and they will be printed out onto console in a group of 4 characters.



Appendix

FreeRTOS on FSiMX8MP Boards 103

9 Appendix

List of Figures
Figure 1: Register with F&S website ................................................................................................................................................4

Figure 2: Unlock software with serial number ..................................................................................................................................5

Figure 3: Device tree entry .............................................................................................................................................................19

List of Tables
Table 1: Content of the created release directory ............................................................................................................................7

Table 2: Description of the directory structure ...............................................................................................................................12

Third Party Agreement from Real Time Engineers Ltd. 
Any FreeRTOS source code, whether modified or in its original release form, or whether in 
whole or in part, can only be distributed by you under the terms of version 2 of the GNU General 
Public License plus this exception. An independent module is a module which is not derived 
from or based on FreeRTOS.
Clause 1: Linking FreeRTOS with other modules is making a combined work based on 
FreeRTOS. Thus, the terms and conditions of the GNU General Public License V2 cover the 
whole combination.
As a special exception, the copyright holders of FreeRTOS give you permission to link 
FreeRTOS with independent modules to produce a statically linked executable, regardless of 
the license terms of these independent modules, and to copy and distribute the resulting 
executable under terms of your choice, provided that you also meet, for each linked 
independent module, the terms and conditions of the license of that module. An independent 
module is a module which is not derived from or based on FreeRTOS.
Clause 2: FreeRTOS may not be used for any competitive or comparative purpose, including 
the publication of any form of run time or compile time metric, without the express permission 
of Real Time Engineers Ltd. (this is the norm within the industry and is intended to ensure 
information accuracy).



Appendix

104 FreeRTOS on FSiMX8MP Boards

Important Notice
The information in this publication has been carefully checked and is believed to be entirely 
accurate at the time of publication. F&S Elektronik Systeme assumes no responsibility, 
however, for possible errors or omissions, or for any consequences resulting from the use of 
the information contained in this documentation.
F&S Elektronik Systeme reserves the right to make changes in its products or product 
specifications or product documentation with the intent to improve function or design at any 
time and without notice and is not required to update this documentation to reflect such 
changes.
F&S Elektronik Systeme makes no warranty or guarantee regarding the suitability of its 
products for any particular purpose, nor does F&S Elektronik Systeme assume any liability 
arising out of the documentation or use of any product and specifically disclaims any and all 
liability, including without limitation any consequential or incidental damages.
Products are not designed, intended, or authorised for use as components in systems intended 
for applications intended to support or sustain life, or for any other application in which the 
failure of the product from F&S Elektronik Systeme could create a situation where personal 
injury or death may occur. Should the Buyer purchase or use a F&S Elektronik Systeme 
product for any such unintended or unauthorised application, the Buyer shall indemnify and 
hold F&S Elektronik Systeme and its officers, employees, subsidiaries, affiliates, and 
distributors harmless against all claims, costs, damages, expenses, and reasonable attorney 
fees arising out of, either directly or indirectly, any claim of personal injury or death that may 
be associated with such unintended or unauthorised use, even if such claim alleges that F&S 
Elektronik Systeme was negligent regarding the design or manufacture of said product.


