

PicoCOM1

Device-Driver

Version 1.13 Date: 11.04.2011

© F & S Elektronik Systeme GmbH 2008

F & S Elektronik Systeme GmbH
Untere Waldplätze 23
D-70569 Stuttgart

Page 1

Table Of Contents

1 Device Driver 2

1.1 Driver for Digital I/O ... 2

1.2 Analog-IN Driver .. 10

1.3 Display Driver .. 14

1.4 NANDFMD-Driver .. 16

1.5 SERIAL Driver ... 17

1.6 Ethernet Driver .. 19

1.7 SD/MMC Driver ... 20

1.8 Audio Driver ... 20

1.9 I²C Driver ... 22

1.10 SPI Driver .. 23

1.11 CAN Driver .. 24

2 Modules and Utilities 28

2.1 NDCUCFG utility ... 28

2.2 Module NETUI ... 32

2.3 Extending the Search Path .. 33

3 Index 34

Page 2

1 Device Driver

1.1 Driver for Digital I/O

PicoCOM1 has 43 programmable I/O lines. You have to use the-
se driver to configure and access the I/O lines.

Installation of the driver is done by setting some registry values
under the following registry key:

[HKLM\Drivers\BuiltIn\DIGITALIO]

Required settings:

Key Value Comment

“Prefix” “DIO” This required value specifies
the driver’s device file name
prefix. It is a three-character
identifier, such as COM.

“Dll” “DIGIO.dll” Name of the DLL with the
Driver

“Order” Dword:97 This value specifies the load
order for the driver. If two driv-
ers have the same load order
value, the drivers load in the
order that they occur in the
registry.

“Index” Dword:1 This value specifies the device
index, a value from 0 through
9.

“Ioctl” Dword:4 Call post-initialisation function.

“Port” Dword:n 0,1,2,3,4 or 5

“UseAsIOA“ Dword:n 1 = The corresponding pin

Page 3

“UseAsIOB“ is used as general purpose
I/O. One bit for each I/O pin.

“DataDirA”
“DataDirB”

Dword:n Data Direction.
0 = The corresponding pin
is an input.
1 = The corresponding pin
is an output.
One bit for each I/O pin.

“DataInitA”
“DataInitB”

Dword:n Default value of the
output pin after driver
initialization.

“IRQCFG0” Hex:00,00,00,
 00,00,00

Interrupt configuration 0
0 = The corresponding pin
is not configured to signal a
raising edge.
1 = The corresponding pin
is configured to signal a raising
edge.

“IRQCFG1” Hex:00,00,00,
 00,00,00

Interrupt configuration 1
0 = The corresponding pin
is not configured to signal a
falling edge.
1 = The corresponding pin
is configured to signal a falling
edge.

“FriendlyName” Digital I/O driv-
er for Pico-
COM1

The driver is realised as a block device driver. The interface func-
tions are CreateFile(), ReadFile(), WriteFile(),

SetFilePointer() and DeviceIoControl().

Page 4

PORT 0

BIT 7 6 5 4 3 2 1 0

PIN 24 23 18 17 16 15 14 13

R/W R/W R/W R/W R/W R/W R/W R/W R/W

UseAsIOA
Bit

7 6 5 4 3 2 1 0

DataDirA
Bit

7 6 5 4 3 2 1 0

DataInitA
Bit

7 6 5 4 3 2 1 0

PORT 1

BIT 7 6 5 4 3 2 1 0

PIN 39 38 37 36 35 34 33 32

R/W R/W R/W R/W R/W R/W R/W R/W R/W

UseAsIOA
Bit

15 14 13 12 11 10 9 8

DataDirA
Bit

15 14 13 12 11 10 9 8

DataInitA
Bit

15 14 13 12 11 10 9 8

PORT 2

BIT 7 6 5 4 3 2 1 0

PIN 48 47 46 45 44 43 41 40

R/W R/W R/W R/W R/W R/W R/W R/W R/W

UseAsIOA
Bit

23 22 21 20 19 18 17 16

DataDirA
Bit

23 22 21 20 19 18 17 16

DataInitA
Bit

23 22 21 20 19 18 17 16

Page 5

PORT 3

BIT 7 6 5 4 3 2 1 0

PIN 60 59 58 57 56 55 50 49

R/W R/W R/W R/W R/W R/W R/W R/W R/W

UseAsIOA
Bit

31 30 29 28 27 26 25 24

DataDirA
Bit

31 30 29 28 27 26 25 24

DataInitA
Bit

31 30 29 28 27 26 25 24

PORT 4

BIT 7 6 5 4 3 2 1 0

PIN 70 69 68 67 66 65 64 63

R/W R/W R/W R/W R/W R/W R/W R/W R/W

UseAsIOB
Bit

7 6 5 4 3 2 1 0

DataDirB
Bit

7 6 5 4 3 2 1 0

DataInitB
Bit

7 6 5 4 3 2 1 0

PORT 5

BIT 7 6 5 4 3 2 1 0

PIN 76 75 74

R/W R/W R/W R/W R/W R/W R/W R/W R/W

UseAsIOB
Bit

15 14 13 12 11 10 9 8

DataDirB
Bit

15 14 13 12 11 10 9 8

DataInitB
Bit

15 14 13 12 11 10 9 8

Page 6

IRQCFG1 IRQCFG0 Comment

0 0 Interrupt disabled

0 1 Raising edge enabled

1 0 Falling edge enabled

1 1 Raising and falling edge ena-
bled

IRQCFG0 and IRQCFG1:

Port1 Port0 Port

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 BitPos

39 38 37 36 35 34 33 32 24 23 18 17 16 15 14 13 IO-Pin

Port3 Port2 Port

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 BitPos

60 59 58 57 56 55 50 49 48 47 46 45 44 43 41 40 IO-Pin

Port5 Port4 Port

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 BitPos

 76 75 74 70 69 68 67 66 65 64 63 IO-Pin

Programming Example (native code)

1.) Open one digital port

HANDLE hDIO;

hDIO = CreateFile(_T("DIO1:"),

 GENERIC_WRITE, 0,

 NULL, OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL, NULL);

if(hDIO == INVALID_HANDLE_VALUE)

{

Page 7

 MessageBox(NULL, TEXT("WinMain():

 CreateFile() failed"),

TEXT("Err! – DIO-Test"),

MB_OK | MB_ICONEXCLAMATION);

return(FALSE);

}

2.) Write data to the port

unsigned char data = 0xAA;

DWORD dwBytesWrite = 1;

WriteFile(hDIO, &data, dwBytesWrite,

 &dwBytesWrite, NULL);

if(dwBytesWrite != 1)

{

 // Error

}

3.) Change port

LONG lDistance = 1;

SetFilePointer(hDIO, lDistance, NULL,

 FILE_BEGIN);

4.) Using Interrupts

WAITIRQ cWaitIrq;

cWaitIrq.usBitPos = 34; //Port 4, Bit 2

cWaitIrq.dwTimeOut = 2000; //Wait for 2sec for

 //Interrupt

/* If the corresponding pin is configured as

raising edge *xor* falling edge this value has

to be false. If the corresponding pin is

configured for both edges this value has to be

false to receive the falling edge and true to

receive the raising edge. */

Page 8

cWaitIrq.bType = FALSE;

4.1) Request Interrupt

/* Request a sysintr */

if(! DeviceIoControl(hDIO,IOCTL_DIO_REQUEST_IRQ

 &cWaitIrq.usBitPos,

 sizeof(unsigned short),

 NULL, 0,NULL, NULL))

{

 //Error. Can not request for interrupt.

}

4.2) Wait for Interrupt

/* Wait for a sysintr */

DWORD dwWaitRes = -1; //Value that indicates

//if event or timeout

//occurred. That match

//the return value of

//WaitForSingleObject.

if(! DeviceIoControl(hDIO,IOCTL_DIO_WAIT_IRQ,

 &cWaitIrq,

 sizeof(WAITIRQ),

 &dwWaitRes, sizeof(DWORD),

 NULL, NULL))

{

 //Error. Can not wait for interrupt.

}

Page 9

4.3) Reset Interrupt

/* Call InterruptDone on a sysintr */

if(! DeviceIoControl(hDIO,IOCTL_DIO_INTDONE_IRQ,

 &cWaitIrq.usBitPos,

 sizeof(unsigned short),

 NULL, 0, NULL, NULL))

{

 //Error. Can not reset interrupt.

}

4.4) Release Interrupt

/* Release a sysintr */

if(! DeviceIoControl(hDIO,IOCTL_DIO_RELEASE_IRQ,

 &cWaitIrq.usBitPos,

 sizeof(unsigned short),

 NULL, 0, NULL, NULL))

{

 //Error. Can not release interrupt.

}

Page 10

1.2 Analog-IN Driver

PicoCOM1 features 3 analog inputs. The selection of a channel
can be done with the registry key Channel or dynamically with the

SetFilePointer() function.

To access all channels separately using different file handles, one
driver instance for each channel can be created in registry. Just
copy the existing registry entry and adapt the Index and the
Channel value.

Installation of the driver is done by setting some registry values
under the following registry key:

[HKLM\Drivers\BuiltIn\ANALOGIN]

Required settings:

Key Value Comment

"Prefix" “AIN“ This required value speci-
fies the driver’s device file
name prefix. It is a three-
character identifier, such as
COM.

“Dll“ “PC2_ANALOGIN.DLL
“

Name of the DLL with the
driver

“Order“ Dword:1 This value specifies the load
order for the driver. If two
drivers have the same load
order value, the drivers load
in the order that they occur
in the registry.

“Index“ Dword:1 This value specifies the
device index, a value from 0
through 9.

“Flags” Dword:0 4: Disabled from loading

Page 11

Key Value Comment

“Ioctl“ Dword:4 Call post-initialisation func-
tion.

“Channel“ Dword:n Number of the analogue
channel. See Table Chan-
nel.
Default: 0

“Timeout” Dword:50 Timeout waiting for a sam-
ple to be completed.
Default: 50

“Friend-
lyName“

“ Analog input driver
for PicoCOM1“

“Debug” Dword:0|4 Set to 4 to get list of registry
settings at serial debug port.
Default: 0

Table 1: Analog-IN registry settings.

The driver is realised as a block device driver. The interface func-
tions are CreateFile() and ReadFile(). After opening the

channel you can call ReadFile() to read one value from the

port. The type of the pointer for ReadFile() must be of size

WORD. To sample more than one value a buffer (array) of sever-
al WORDS can be passed to ReadFile().

Programming example:

HANDLE hAIN;

/* open analog-in driver */

hAIN = CreateFileW(L"AIN1:",

GENERIC_READ|GENERIC_WRITE, 0, NULL,

OPEN_EXISTING, 0, NULL);

if (INVALID_HANDLE_VALUE != hAIN)

{

Page 12

 WORD wValue = 0;

 DWORD dwBytesRead;

 BOOL bNoError = TRUE;

 for(int i=0; i<3 && bNoError; i++)

 {

 /* select channel */

 SetFilePointer(hAIN, i, NULL,

 FILE_BEGIN);

 /* sample analog value 10 times */

 for(int n=10; n>0; n--)

 {

 if (ReadFile(hAIN, &wValue, 1,

 &dwBytesRead, NULL))

 {

 RETAILMSG(1,

(L"AIN value ch%d: %d\r\n", i, wValue));

 }

 else

 {

 RETAILMSG(1,

(L"Reading from analog in failed (LE: %d)\r\n",

 GetLastError()));

 }

 Sleep(2);

 } /* read loop */

 } /* channel loop */

 CloseHandle(hAIN);

}

else

{

Page 13

 RETAILMSG(1,

 (L"Can not open 'AIN1:' (LE: %d)\r\n",

 GetLastError()));

}

Page 14

1.3 Display Driver

PicoCOM1 is naturally designed to come without any display.
However, by default it has a remote display installed as the Win-
dows CE GDI display driver. It is also a Windows CE LC-Display
driver available to connect monochrome graphic displays which
can be driven by a serial SPI connection.

The driver can be found in registry under:

[HKLM\System\GDI\Drivers]

To connect to the remote display of PicoCOM1 a host program on
your development PC is needed. You can download the host
program CERHOST.EXE from http://www.picocom.de.

Please make sure that you have configured the network interface
of the PicoCOM1 and you are able to establish a connection to
the PicoCOM1 from your development PC. Then start
CERHOST.EXE and select ‘connect’ from File-Menu. You should
get an output similar to the figure below.

Page 15

Note: In some rare situations CERHOST can not display the tar-
get name. If you can not see the device in the ‘Active target de-
vices’ section, please make a left-mouse-click into the left upper
corner of the list box. If your PicoCOM1 sends the broadcast, you
should see the Ip-Address of the target as result of your selection
by the left-mouse-click.

Page 16

1.4 NANDFMD-Driver

[HKLM\Drivers\BuiltIn\NANDFMD]

Required settings:

Key Value Comment

"Prefix" “DSK“ This required value
specifies the driv-
er’s device file
name prefix. It is a
three-character
identifier, such as
COM.

“Dll“ “pc1_NandFlash.dll“ name of the DLL
with the driver

“Order“ Dword:0 This value specifies
the load order for
the driver. If two
drivers have the
same load order
value, the drivers
load in the order
that they occur in
the registry.

“Index“ Dword:1 This value specifies
the device index, a
value from 0
through 9.

“FriendlyName“ "PicoCOM1 Nand
Flash Driver“

“Profile“ “FFSDISK“ Drive name

Page 17

1.5 SERIAL Driver

This driver is needed to access the serial interfaces COM1:,

COM2: and COM3:.

The registry keys for the driver are:

[HKLM\Drivers\BuiltIn\SERIAL1]

[HKLM\Drivers\BuiltIn\SERIAL2]

[HKLM\Drivers\BuiltIn\SERIAL3]

Optional settings:

Key Value Comment

"Priority256" Dword:101 Priority for serial
receive/transmit
thread.
Default: 101

"RS485" Dword:1
Dword:0

Enable RS485
mode for COM1:
Default: 1

RS485 Mode

On PicoCOM1 you can toggle COM1: between RS232 and
RS485. To do this, you have to add the registry value RS485 and
set it to 1.

Page 18

Programming Example

1) Open one serial port

HANDLE hCOM = CreateFile(L”COM2:”,

 GENERIC_WRITE|

 GENERIC_READ,0,NULL,

OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL,

NULL);

if(hCOMA == INVALID_HANDLE_VALUE)

 /* Error handling */

2) Write to serial port

DWORD dwBytesWrite = 0;

BYTE byData = 0xAA;

int res = WriteFile(hCOM, &byData,

 1,&dwBytesWrite,

 NULL);

if(res == 0 || dwBytesWrite != 1)

 /* Error handling */

3) Read from serial port

ReadFile(hCOM, byData, 1, &dwBytesWrite,

 NULL);

if(res == 0 || dwBytesWrite != 1)

 /* Error handling */

4) Closing one serial port

if(hCOM != INVALID_HANDLE_VALUE)

 CloseHandle(hCOM);

Page 19

1.6 Ethernet Driver

The Ethernet-Interface on the PicoCOM1 features a small set of
additional configurations:

Key Value Comment

“LEDConfig” Dword:0…8 Specifies the use of the
LED
0: Link OK
1: RX or TX Activity
2: TX Activity
3: RX Activity
4: Collision
5: 100 Base-TX mode
6: 10 Base-T mode
7: Full Duplex
8: Link OK / Blink on RX-
TX Activity
Default: 8

“TransmitGain” Dword:0…3 Sets the transmit output
amplitude
0: 0dB
1: 0.4dB
2: 0.8 dB
3: 1.2 dB
Default: 1

“Speed” Dword: 0 | 10 |
100

Link speed in Mbit/s
Default: 0 (disabled)

“FullDuplex” Dword: 0…1 Enable Full-Duplex mode
Default: 1

Please note that it is required to define the “Speed” and the
“FullDuplex” value to disable autonegotiation.

Page 20

1.7 SD/MMC Driver

SD slot on PicoCOM1 is able to access SD and MMC storage
cards. SDIO cards are not supported. Options and registry set-
tings for SD driver are available in registry key:

[HKEY_LOCAL_MACHINE\Drivers\sdmem]

Registry settings:

Key Value Comment

“Clock” Dword:5000000 Clock on the SD slot.
Should be set to
5Mhz or 15Mhz.

“DeadTime” Dword:1000 Polling interval for
card detection.

“SingleBlockWrites” Dword:0 This option allows to
disable multiple block
write command when
set to 1. Multiple block
write commands
cause some problem
with some SD cards.

1.8 Audio Driver

Audio driver for PicoCOM1 is implemented as wavdev2 driver and
can be configured under the following registry key:

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio]

Note: Due to compatibility purposes the mixer interface of
audio driver has changed in driver major release version 2
(V2.x) . Following table will describe the mixer values used in this
new version. If you intend to used the “old” audio mixer, which still

Page 21

is available in all kernel images, please contact our support team
to get detailed information.

Possible settings:

Key Value Comment

“Prefix” “WAV” This required value
specifies the driver’s
device file name pre-
fix. It is a three-
character identifier,
such as COM.

“DLL” “pc1_wavedev.dll” name of the driver file

“Index” Dword:1 This value specifies
the device index, a
value from 0 through
9.

“MasterOutMute” Dword:0/1

Mute all audio output
channels.
Default: 0

“MasterOutVol” Dword:
0 – 0xFFFFFFFF

Main volume for all
Output-channels.
Default: 0xFFFFFFFF

“BypassMute” Dword:0/1 Mute Line-In bypass.
Default: 1

“HeadphoneVol” Dword:
0 – 0xFFFFFFFF

Volume for head-
phone channel.
Default: 0xDFF2DFF2

“MasterInVol” Dword:
0 – 0xFFFFFFFF

Main volume for all
Input-channels.
Default: 0x0

“MasterInMute“ Dword:0/1 Mute Line-In
Default: 1

“LineInVol “ Dword:
0 – 0xFFFFFFFF

Volume for Line-In
channel.
Default: 0x0

Page 22

Additionally the audio-line can be configured using the F&S Audio
Mixer utility, remaining in the control panel. Any mixer changes
automatically adapt the registry settings. To store the current
configuration permanently you just have to save the registry.

Remark: All volume settings separate into left and right channel
value. The first 2 bytes of the 4 byte value are controlling the vol-
ume of the left channel. The second 2 bytes control the right
channel volume. A value of 0xFFFF0000 for example sets the left
channel volume to maximum and the right channel to mute.

1.9 I²C Driver

Note: Not included in the current kernel release !

Page 23

1.10 SPI Driver

Note: Not included in the current kernel release !

Page 24

1.11 CAN Driver

This chapter only describes the configuration of the driver. The
usage of the driver including examples is described in the docu-
ment “PicoCOM1_CanInterface_eng.pdf”.

All driver settings are defined under the following registry key:

[HKLM\Drivers\BuiltIn\CAN1]

Possible settings:

Key Value Comment

Prefix “CID“ This required value
specifies the driver’s
device file name prefix.
It is a three-character
identifier, such as COM.

Dll “CANDRV.DLL“ Name of the driver DLL.
Order Dword:20 This value specifies the

load order for the driver.
If two drivers have the
same load order, they
use the order that they
occur in the registry.

Index Dword:1 This value specifies the
index x in the device
name CIDx: (x = 0..9).

Ioctl Dword:4 Call post-initialisation
function.

DeviceArrayIndex Dword:0

Number of the hardware
port you want to access.
0: Port at connector J9
(starterkit)
Note: This value should
not be changed

Page 25

FriendlyName “CAN driver for
PicoCOM“

Description as shown in
some info dialogs

UseTxIRQ Dword: 1 Use send buffer
0: No send buffer; wait
until transmission is
possible when sending
1: Use send buffer; re-
turn immediately when
sending and create
“transmitted” event when
actually done.

SendBufferSize Dword:100 Number of messages in
each send buffer (since
V2.x)

EventQueueSize Dword: 200 Number of possible
event entries in each
event queue

Debug Dword: 0 Activate additional de-
bug output
Note: This value usually
does not need to be
changed

Priority256 Dword: 103 Priority for CAN service
thread

Baudrate Dword: 1000000 Default baudrate

CanMode2B Dword: 0 Default CAN bus mode:
0: CAN2.0A (only stand-
ard frames)
1: CAN2.0B (standard
and/or extended frames)

Format Dword: 0 Default frame format:
0: depending on mode
(standard in CAN2.0A,
extended in CAN2.0B)
1: always standard
2. always extended

Page 26

Virtualize Dword: 0 Virtual CAN loop-back:
0: The local host never
sees transmitted frames
1: The local host also
sees and maybe ac-
cepts transmitted frames

AcceptanceCode Dword: 0 Code value for default
acceptance filter (since
V2.x)

AcceptanceMask Dword: 0 Mask value for default
acceptance filter (since
V2.x)

MaskActive Dword: 0 Acceptance filter mask
logic (see below, since
V2.x)

Align Dword: 0 ID and acceptance filter
alignment (see below,
since V2.x)

IRQ Dword: 143 Default IRQ for CAN
controller
Note: This value should
not be changed

MaskActive

The MaskActive entry defines which bits of the acceptance mask
denote to require a match of the message ID bit with the ac-
ceptance code bit and which message ID bits are always accept-
ed.

MaskActive
setting

Acceptance
Mask bit

ID bit of arriving message

0 0 Must match acceptance code bit

0 1 Always accepted

1 0 Always accepted

Page 27

1 1 Must match acceptance code bit

Align

The Align entry tells how the CAN message IDs and acceptance
filter masks/codes are aligned within the 32-bit DWORD value.
Align=0 is the same setting as in the V1.x drivers.

In addition to the 11 standard ID bits, an acceptance filter for
standard frames may also cover up to the first two data bytes of
the message itself, which allows for easier implementation of high
level protocols like DeviceNet or CanOpen. These data bytes will
always be masked in bits 15..0 of the mask/code. An acceptance
filter for extended frames can only cover the 29-bit extended ID
and no additional data bytes.

Align Standard-
Frame-ID

Extended-
Frame-ID

Standard-
Frame-Filter

Extended-
Frame-Filter

0 Bits 10..0 Bits 28..0 ID: Bits 31..21
Data: Bits 15..0

ID: Bits 31..3
no Data

1 Bits 10..0 Bits 10..0 ID: Bits 10..0
no Data

ID: Bits 10..0
no Data

2 Bits 28..18 Bits 28..0 ID: Bits 28..18
Data: Bits 15..0

ID: Bits 28..0
no Data

3 Bits 31..21 Bits 31..3 ID: Bits 31..21
Data: Bits 15..0

ID: Bits 31..3
no Data

Page 28

2 Modules and Utilities

2.1 NDCUCFG utility

This utility is always included in the WindowsCE image and ena-
bles the customer to access the registry from the command line
and to call some additional helper functions.

Ndcucfg.exe can be started over serial line, telnet or within a
command window. By default, ndcucfg.exe is started from a
Launch/Depend configuration in

[HKEY_LOCAL_MACHINE\Init]

and receives commands over serial line COM3:. If you want to
change the serial line you can find settings of ndcucfg.exe under
the following registry key:

[HKEY_LOCAL_MACHINE\System\NDCUCFG]

Possible settings:

Key Value Comment

"Port" “COM3:” NDCUFG is auto-
matically started
during boot be-
cause of a entry in
HKLM\INIT.
With this value you
can specify on
which serial line
ndcucfg uses for
communication.

"BatchFile“ String The commands in
the file will be exe-

Page 29

cuted during start of
ndcucfg.exe.

List of commands (not complete):

- display mode set <mode>
 Changes the display mode to the given number.
- display mode get
 Retrieves the display mode.
- display rotate get
 Retrieves the display rotation angle.
- display rotate set <n>
 Changes the display rotation to the given angle.
- reg open
 opens the root key under HKLM
- reg open <key>
 opens the specified key under HKLM(open)
- reg opencu <key>
 opens the specified key under HKCU(opencu)
- reg enum

displays a list of all keys and values under the current
location

- reg set value <name> dword <value>
- reg set value <name> string <value>
- reg set value <name> multi <value1>;<value2>
- reg set value <name> hex <value>,<value>,<value>
 sets/creates the value with name <name> to the value
 <value>
- reg create key <name>
 Creates the specified sub-key and opens it.
- reg del value <name>
 Delete the specified value from registry.
- reg del key <name>
 Delete the specified key from registry.
- reg save
 Saves the registry in flash memory, so that modifications

Page 30

 are available after reset.
- fat format <volume>
 Formats the volume with name <volume>.
- contrast +
 Increase contrast voltage of LCD (small steps)
- contrast ++
 Increase contrast voltage of LCD (large steps)
- contrast -
 Decrease contrast voltage of LCD (small steps)
- contrast --

Decrease contrast voltage of LCD (large steps)
- contrast get
 Returns the current contrast voltage of LCD.
- contrast set <n>
 Sets the contrast voltage of LCD. The value is the high time
 for the PWM circuit.
- backlight on
 Switch on backlight of LCD
- backlight off
 Switch off backlight of LCD
- touch calibrate
 Shows the calibration screen for the touch panel.
- sip on
 Shows the input panel window.
- sip off
 Hides the input panel window.
- reboot
 Reboots the device.
- cert import cert <store> <file>
 Import certificate with filename <file> into certificate store
 <store>. Values for <store> MY, CA or ROOT
- cert import pkey <store> <file>
 Import private key from file into certificate store MY, CA or
 ROOT
- cert enum
 List all certificates from store MY, CA and ROOT

Page 31

- cert delete <store> <store name>
 Delete certificate
- user create <name> <password>
 Creates new use with password
- user delete <name>
 Delete user
- user enum
 List all users
- REM <comment>
 Records comments (remarks) in a batch file.
- ECHO <message>
 Displays messages.
- start <file name> <parameter>
 Creates a new process and its primary thread.
- ndcucfg -B<file name>
 runs <file name> as batch process.

Page 32

2.2 Module NETUI

This module implements the user interface for the Network ac-
cess. This module is used if a network resource is accessed
which needs a user and password. By setting the described pa-
rameters, it is possible to avoid the normally shown dialog box.

The value can be found under key:

[HKLM\System\NETUI]

Parameter:

Key Value Comment

"AutoLogon" Dword:0|1 Set this value to 1
to use the registry
values UserName
and Password for
network access.

"UserName“ String

"Password“ String

Note: Using these option causes a security risk as the password
will be stored in plain text.

Page 33

2.3 Extending the Search Path

It’s possible to extend the default path that the kernel uses to
locate executable files. The necessary entry can be found under
registry key:

HKEY_LOCAL_MACHINE\Loader

Possible settings:

Key Value Comment

"SystemPath" Multi:“\\ffsdisk\\” To extend the path
you must add val-
ues to the value.

The SystemPath value has a maximum length of MAX_PATH
characters, which includes the terminating NULL. Any path speci-
fied by the OEM is the last path to be when looking for a EXE.
This registry value is only read during system boot.

Page 34

3 Index
Driver

Audio 20
CAN 23
Digital I/O 2
Display 14
Ethernet 19
Flash file system 16
SD/MMC 20
SERIAL 17
SPI 22
UART 17

Extending the Search Path 32
Module NETUI 31
Utility

NDCUCFG.EXE 27

