NSPI Driver

Native SPI Support

Version 1.7
(2009-07-13)

PicoCOM1
PicoCOM2

N Windows CE

About This Document

This document describes how to configure the SPI driver and how to use it in own software
applications. As the drivers for PicoCOM1 and PicoCOM2 are nearly identical this documen-
tation is desired to be used for both boards. Platform specific differences are noted explicitly.

The latest version of this document can be found at http://www.fs-net.de.

© 2009

F&S Elektronik Systeme GmbH
Untere Waldplatze 23
D-70569 Stuttgart

Phone: +49(0)711-123722-0
Fax: +49(0)711-123722-99

History

Date \' Platform A,M,R | Chapter Description Au

2009-07-13 1.6 PicoCOM1/2 | A, M * New document format A4. One documentation for Picoc- MK
COM1 and PicoCOM2

2009-07-16 1.7 PicoCOM1/2 | A, M 4 Clock rate limitations added. MK

\Y Version

A,M,R Added, Modified, Removed

Au Author

Table of Contents

1 Introduction 1
2 Pin Assighment 2
3 Installing the NSPI Driver 3
3.1 Installation with the CAB fileeeiiiiii e 3
4 Configuration 4
41 Description of the Available Registry Values ... 6
411 PrIOMIY256 ...t e e e e 6
i 2 B T o TH o TP PPPRPP 6
o G T |V o To 1= TP PPPRPPT 6
4.2 TIMING PArAMETIELSeeiiiiiiiiie e e e e e e e e e 7
4.3 Chip-Select DECOAING ueieeiiieiiiiie et 8
5 The NSPI Driver in Applications 10
6 NSPI Reference 11
6.1 (07 (T 1 (=] 1 L= PRSP 12
6.2 (07 [0 1S1=T o F=Ta Lo 1= P PTTTSPP 13
6.3 DeVICEIOCONTION() -..uereeeeeeee ettt e e e 14
6.3.1 IOCTL_NSPI_SENDcoiiiiiie e 15
6.3.2 IOCTL_SPI_EXCHANGEcceiiiiii it 16
6.3.3 IOCTL_DRIVER_GETINFO ...cciitiiieiiiiie et 17
7 Header File nspiio.h 19
8 Appendix 21
1S3 (T 1= PR POPPPPPR 21
LISt Of FIQUIES ..o e e e e 21
LISt Of TABIES ... e e e 21
IMPOTANT NOTICE. ...t 21

Introduction

1 Introduction

Due to a lot of configuration values the SPI interface of the PicoCOM is very flexible, even
up to high clock ranges. The PicoCOM features 3 Chip-Select lines directly (CS0-CS2). Ad-
ditionally it offers the possibility to combine these lines and select up to 7 devices, using an
external decoder logic.

Note - PicoCOM1:

Please note that CS3 is restricted for internal use only. For this reason its configuration
should not be changed.

Note - PicoCOM2:

By default only CS0 can be used without restriction. CS1-CS2 are linked with some LCD
signals. Please refer to the Hardware or Device Driver Documentation for more details.

Pin Assignment

2 Pin Assignment

The following table shows the dedicated SPI lines, located on the 80 pin main connector and

connector on the PicoCOM Startinterface.

Connec-

Board tor MISO MOSI CLK CSo CSHt CSs2
PicoCOM1 Main Pin 56 Pin 55 Pin 57 Pin 58 Pin 59 Pin 60
Ji1 Pin 16 Pin 15 Pin 17 Pin 18 Pin 19 Pin 20
PicoCOM2 Main Pin 26 Pin 27 Pin 28 Pin 29 Pin 53 Pin 54
J10 Pin 3 Pin 4 Pin 5 Pin 6 n.c. n..c.

Table 1: Pin Assignment of SPI Signals

You can use this driver in combination with the GPIO SPI driver, if both drivers are available
on the platform. But please make sure that the other driver is not configured to use the
above pins or otherwise the drivers will get into conflict.

Installing the NSPI Driver

3 Installing the NSPI Driver

The NSPI driver is usually installed as sp10:. We provide a special Windows Cabinet File
(“CAB-File”) for an automatic installation, but you can also do the installation manually.

Note — PicoCOM(1:

In difference to the PicoCOM2 the SPI driver is included in each default kernel for the Pico-
COM1

3.1 Installation with the CAB file

The easiest way to install the driver is to use the provided Windows Cabinet File NSPI-
PicoCOM2.cab. Just copy this file to the board (e.g. to the root directory) and double click
on it. This will automatically install the driver as sP10:. When asked for a destination direc-
tory, just click ok. All registry settings will be done for the default values and the CAB file will
vanish again when done.

If you don’t have access to a mouse or touch panel on the PicoCOM, or if you even don’t use
a display at all, you can also do the CAB file installation on the command line. Just type the
following command:

If you need settings other than the defaults, you can edit the registry values anytime after
installation is complete.

Installing the NSPI Driver

4 Configuration

You can also do the installation by hand. This requires setting some registry values. The tim-
ing parameters of each Chip-Select line can be configured individually. These configuration
values take place in the registry under

[HKLM\Drivers\BuiltIn\SPICSO0]
[HKLM\Drivers\BuiltIn\SPICS1]
[HKLM\Drivers\BuiltIn\SPICS2]

Entry Type Value Description

D11 String pc<n>_spi.dll Driver DLL

FriendlyName String Native SPI driver |Description

Prefix String SPI For SPIO:

Index DWORD 0 For SPIO:

Order DWORD 101 Load sequence

SPIController |[DWORD 1 Index of the SPI controller do be
used (must be 1)

ClockFreq DWORD 420000 SPI clock in Hz

ClockDelay DWORD 0 Clock delay after Chip-Select sig-
nal

ByteDelay DWORD 0 Minimum delay between each
byte transfer

Mode DWORD 0 SPI-Mode
(See SPI-Modes)

SPICS DWORD 0..3 Chip-Select of the corresponding
device

Timeout DWORD 2000 Number of milliseconds wait for
end of transfer

PollingMode DWORD 0 1: Polling-Mode
0: IRQ-Mode

Priority256 DWORD 103 Thread priority

Debug DWORD 0 Debug verbosity

Table 2: NSPI Registry Values

Most of the values will get meaningful defaults if omitted, only those values highlighted in
blue/grey and italics above in the first few rows really have to be given. The library
pc<n>_spi.dll has to be stored in flash memory into the \FFSDISK directory, if it is not

already pre-loaded in the kernel.

Installing the NSPI Driver

Additionally there are some more controller specific values. These takes place under the
registry key

[HKLM\Drivers\SPIControllerX]

where X is the index of the SPI controller (0 if only one controller is available).

Entry Type Value Description
DmaBufferSize DWORD 4096 Size of the internal DMA buffer
ModeFaultDetect |DWORD 1 Mode-Fault detection

1: Enabled
0: Disabled
LoopBackEnable DWORD 0 Loop-Back MOSI and MISO line
1: Enabled
0: Disabled
CsDelay DWORD 0 Chip-Select delay
(see Timing Paramters)
CsDecode DWORD 0 Enable Chip-Select decoding
1: Enabled
0: Disabled

Table 3: NSPI Registry Settings for the SPI Controller

Installing the NSPI Driver

4.1 Description of the Available Registry Values

4.1.1 Priority256

The actual transfer will take place with the Windows CE priority given in Priority256. Chang-
ing this value is only required if the NSPI driver does interfere with other drivers. A lower
value means higher priority, a higher value means lower priority. The region is 0 to 255.

Attention:

A value too small (= very high priority) may block other device drivers, resulting in sporadic
malfunctions.

4.1.2 Debug

If the Debug entry is set to a value different to zero, the driver will output additional informa-
tion on the debug port. Each bit enables a different category of output. This information is
usually not required and only necessary when looking for errors in the driver. Keep this value
at zero to have the best possible performance.

4.1.3 Polling-Mode

By default the SPI Driver runs in IRQ-mode. After establishing a DMA cycle the driver goes
into sleep. After the DMA buffer is running out, the driver is woken up again by an SPI inter-
rupt to start the next DMA transfer. This method is very efficient, as the driver doesn’t block
other processes on the PicoCOM. The DMA buffer in most cases will be big enough to trans-
fer the data in one cycle. This causes the driver to release execution time directly and wait
for the corresponding interrupt. In some cases, especially for very small data packages, wait-
ing for an Interrupt could slow down the response time.

To finish transferring as fast as possible Polling-Mode can be enabled. This causes the
driver to poll the transfer state directly after starting the DMA cycle. When sending a lot of
small data packages this might be the preferred method.

4.1.4 Mode

The registry value Mode defines the active mode (polarity) and the active edge (phase) of
the clock signal.

SPIMode Description Signal

0 Clock active high, data valid
on 1% (=rising) edge

1 Clock active high, data valid ﬂ

on 2" (=falling) edge

Installing the NSPI Driver

2 Clock active low, data valid

on 1% (=falling) edge vl
BEN

3 Clock active low, data valid
on 2" (=rising) edge

Table 4: SPI Modes

4.1.5 Timing parameters (ClockDelay, ByteDelay, CSDelay)

Altogether there are three time parameters:

e ClockDelay: Time between triggering the Chip-Select line and starting data trans-
fer.
PicoCOM1: <ClockDelay> = <ClockDelay value> x 100MHz
PicoCOM2: <ClockDelay> = <ClockDelay value> x 120MHz

e ByteDelay: Delay between consecutive transfers.
PicoCOM1: <ByteDelay> = <ByteDelay value> x 100MHz
PicoCOM2: <ByteDelay> = <ByteDelay value> x 120MHz

e CsDelay: Rest period between accessing different Slaves (Chip-Select switch).
PicoCOM1: <CSDelay> = <CSDelay value> x 100MHz / 32
PicoCOM2: <Csbelay> <CSDelay value> x 120MHz / 32

o S G s Gl e

MOSI

MISO

CSo
CSt
BD CD
ClockDelay ByteDelay CSDelay BD
(CD) (BD) (CSD)

Figure 1: SPI timing parameters

Installing the NSPI Driver

4.1.6 ClockFreq
Due to dependencies of internal clocks the clock range of the SPI interface is limited. On Pi-
coCOM1 for example the SPI-Clock can operate between ~390kHz and ~100MHz.

Additionally please note that only values devisable by the maximum clock-rate are possible.
For example if a destination rate of 650kHz is desired on PicoCOM1, an essential clock of
about 100MHz/154 = 649kHz will be used.

Board Min Max
clock rate | clock rate

PicoCOM1 | ~390kHz | ~100Mhz
PicoCOM2 | ~470KHz | ~120MHz

Table 5: Possible clock rates

4.2 Chip-Select Decoding

The SPI-controller of the PicoCOM natively supports connecting a 4-16 bit decoder to gen-
erate up to 15 Chip-Select signals. As CS3 is unavailable on the PicoCOM, only CS0-CS2
can be used for decoding (up to 7 devices).

Chip-Select decoding is enabled by setting the value csDecode in the controller registry key
to 1. By enabling this feature there can be created one SPI registry entry for each physically
available device. This means that there will be one device (sp1x:) in WindowsCE for each
device connected to the Chip-Select decoder:

[HKLM\Drivers\BuiltIn\SPICSO0]
[HKLM\Drivers\BuiltIn\SPICS1]
[HKLM\Drivers\BuiltIn\SPICS6]

When doing so the sp1cs configuration value defines the combined output-value of the
three Chip-Select lines. When no transfer is in process all CS lines are high.

SPICS | CS2 | CS1 | CSO | configuration

set
0 0 0 0 1
1 0 0 1 1
2 0 1 0 1
3 0 1 1 1
4 1 0 0 2
5 1 0 1 2
6 1 1 0 2
7 idle state

Table 6: Chip-Select decoding

Installing the NSPI Driver

Please note that the configuration for each Chip-Select output value can not be configured
separately. As shown in the table above, the Chip-Select coded values 0 — 3 and 4 — 6 each
share one configuration set. It is recommended to keep the corresponding parameters con-
sistent within its configuration set.

Remark — PicoCOM1:

When Chip-Select decoding is activated, it must be taken into account that CS3 may not be
used for decoding (compare table above). Additionally there are some adaptations for the
CAN driver required. To avoid malfunctions the easiest way will be deactivating the CAN
driver completely. This can be done by settings the Flags value in the CAN driver registry

key to 4.
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\CAN1]
"Flags"=dword:4

If you need both interfaces (CAN and SPI) and the CS-Decoding functionality is required,
please contact the F&S support. We will give you the configuration set, fitting your needs.

The NSPI Driver in Applications

5 The NSPI Driver in Applications

The NSPI driver is designed to work as master, therefore the connected device must be
slave. This means that MOSI, CLK and CS are output signals and MISO is an input signal.
The PicoCOM will generate the clock and chip select signals. The driver uses the common
file interface (stream interface) to talk to the SPI bus.

Before the actual data transmission, most devices require some command to determine
what to do with the data. For example a memory device will require information whether to
read or write and also an address where to start. This command part is a send-only phase,
i.e. the bytes received during this phase are discarded. This phase is optional. If the device
does not require this command phase, you can leave it empty, i.e. use a length of 0 bytes.

Command Data to send

» MOS|
MISO
¥,

Data received

Send-only phase Send and/or receive phase

Figure 2: SPI Transfer Cycle

10

NSPI Reference

6 NSPI Reference

The driver uses the common file interface, and there mostly the DeviceIoControl () func-
tion to talk to the SPI bus.

When communicating to an SPI device, the transmission always goes in both directions at
the same time. With every clock cycle, one bit is sent via the MOSI line to the device and
one bit is received via the MISO line from the device. Therefore after one byte is sent, also
one byte is received. This allows for the following transmission types.

Transmission Description

Send-only Meaningful data is only transferred via the MOSI line. The received bytes
are discarded.

Receive-only Meaningful data is only transferred via the MISO line. The data sent
on the MOSI line is ignored by the device and does not matter. We
send 0xFF as dummy values.

Send and receive Both directions carry meaningful data. The received data is stored
at a different place than the sent data.

Exchange Both directions carry meaningful data. The received data is stored
at the same place as the sent data, replacing it.

Before the actual data transmission, most devices require some command to determine
what to do with the data. For example a memory device will require information whether to
read or write and an address where to start. This command part is a send-only phase, i.e.
the bytes received during this phase are discarded.

Therefore all transmission functions of the SPI driver also contain a command phase, that is
performed before the actual data transfer takes place. If the device does not require this
command phase, you can leave it empty, i.e. use 0 bytes.

11

NSPI Reference

6.1 CreateFile()

Signature:

HANDLE CreateFile(
LPCTSTR 1pFileName, DWORD dwAccess, DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurity, DWORD dwCreation,
DWORD dwFlags, HANDLE hTemplate

)

Parameters:

lpFileName Device file name, usually “sp11:”
dwAccess Device access (see below)
dwShareMode File share mode (see below)
lpSecurity Ignored, set to NULL

dwCreation Set to OPEN_EXISTING

dwFlags Setto FILE_FLAG_WRITE_THROUGH
hTemplate Ignored, setto 0

Device access dwAccess:

0 Device query mode
GENERIC_READ Open device file read-only (receive)
GENERIC_WRITE Open device file write-only (send)

GENERIC_READ | GENERIC_WRITE
Open device file in read-write mode

File share mode dwShareMode:

FILE_SHARE_READ Subsequent open operations succeed only if read access
FILE_SHARE_WRITE Subsequent open operations succeed only if write access
Return:

INVALID_HANDLE_VALUE Failure

Otherwise File handle

Description:

Opens the sPIx: device file for access. This is required for all other functions using this SPI

bus.

If the file handle is not required anymore, you have to call function CloseHandle ().

¥

12

6.2 CloseHandle()

Signature:
BOOL CloseHandle (HANDLE hFileHandle);

Parameters:

hFileHandle Handle to device file

Return:

0 Error, see GetLastError() for details
1=0 Success

Description:

Closes the device file that was opened with CreateFile ().

NSPI Reference

13

NSPI Reference

6.3 DeviceloControl()

Signature:

int DeviceIoControl(
HANDLE hDevice, DWORD dwIoControlCode,
LPVOID lpInBuffer, DWORD dwInBufferSize,
LPVOID lpOutBuffer, DWORD dwOutBufferSize,
LPDWORD lpReturned, LPOVERLAPPED lpOverlapped
)

Parameters:

hDevice Handle to already open device file

dwIoControlCode Control code specifying the device specific function to
execute

lpInBuffer Pointer to the data going into the function (IN data)

dwInBufferSize Size of the IN data (in bytes)

lpOutBuffer Pointer to a buffer where data coming out of the function
can be stored (OUT data)

dwOutBufferSize Number of bytes available for the OUT data

lpReturned Number of bytes actually written to the OUT data buffer

lpOverlapped Unused, set to NULL

Description:

Executes a device specific function. The type of function is given by a control code in pa-
rameter dwIoControlCode. Each function has a specific set of parameters. Usually there
is some data going into the function (IN data) and some data is returned out of the function
(ouT data).

The following table lists all control codes recognised by the NSPI driver V1.x.

Control Code Function

TOCTL_NSPI_SEND Sends command and data to the SPI device

TOCTL_NSPI_RECEIVE Sends command to and then receives data from the SPI
device

TOCTL_NSPI_TRANSFER Sends command and data to the SPI device and receives
data from the device

TOCTL_NSPI_EXCHANGE Sends command and data to the SPI device and receives
data from the device. The received data replaces the sent
data.

Table 7: IOCTL command codes for V1.x

14

6.3.1 IOCTL_NSPI_SEND

NSPI Reference

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_NSPI_ SEND

lpInBuffer Pointer to command bytes; can be NULL if no command
is required

dwInBufferSize Number of command bytes

lpOutBuffer Pointer to the data bytes to send; can be NULL if no data
is required

dwOutBufferSize Number of data bytes

lpReturned Unused, set to NULL

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError () for details

=0 Success

Description:

This command sends the command bytes and then the data bytes to the SPI device. All re-
ceived bytes are discarded.

In fact there is no difference between command and data bytes. So if you like, you can ap-
pend command and data to one buffer and use it either as IN or as OUT array. For example
this can be done when the command and data bytes are well known. In this case this is the
same as using WriteFile ().

However this function makes more sense when command and data already arrive as two
different entities, for example when the command is known, but the data is some variable
parameter of the surrounding function. Then the possibility to pass these on as two different
arrays avoids having to copy command and data bytes to a common buffer.

Remarks:

e In the split version, this function needs two arrays going in: the command bytes and the
data bytes to send. Therefore this call uses both data pointers of the DeviceIoCon-
trol () as IN pointers, lpInBuffer and 1pOutBuffer. This is a little bit unusual, but
works nonetheless.

e When using the DMA method, the number of bytes to send (command+data) is restricted
to the value set in registry value DmaBuffersSize, usually 4096 bytes. When trying to
send more data in one go, the driver will return ERROR_INVALID_PARAMETER without
transmitting anything.

15

NSPI Reference

Example 1:

Send command bytes 0x12, 0x34, 0x56 and data bytes 0x01, 0x02, 0x03, 0x04, 0x05 to the
SPI device. Here we can combine command and data bytes in one array.

BYTE data[8] =
{
0x12, 0x34, 0x56, // command
0x01, 0x02, 0x03, 0x04, 0x05 // data
i
DeviceIoControl (hDevice, IOCTL_NSPI_SEND, data, 8,
NULL, 0, NULL, NULL);

Listing 1: Example IOCTL_NSPI_SEND: One Array

Example 2:

Function for sending command bytes 0x12, 0x34, 0x56 and some data given as function pa-
rameter to the SPI device. To avoid having to copy the data bytes behind the command
bytes into a temporary array, it is better to use the 2-array version.

BYTE command[3] =

{
0x12, 0x34, 0x56

i
void Send (BYTE *data, int len)

{
DeviceIoControl (hDevice, IOCTL_NSPI_SEND, command, 3,
data, len, NULL, NULL);

Listing 2: Example IOCTL_NSPI_SEND: Two Arrays

6.3.2 I0CTL_SPI_EXCHANGE

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_SPI_EXCHANGE

lpInBuffer Pointer to command bytes

nInBufferSize Number of command bytes

lpOutBuffer Pointer to the byte array with the data bytes to send and
where the received data bytes will be stored

nOutBufferSize Number of bytes to send and receive

lpReturned The referenced value will be set to nOutBuffersSize if
pointer is not NULL

lpOverlapped Unused, set to NULL

16

NSPI Reference

Return:

0 Error, see GetLastError () for details
=0 Success

Description:

This command first sends the command bytes to the SPI device. The bytes received during
this phase are discarded. Then it sends the given data bytes to the device and at the same
time receives data bytes from the device. The received data bytes will replace byte after byte
the sent data. After return, the old data is completely overwritten with the new data.

Example:

Send command 0x55 0x66 and data bytes 0x01, 0x02, 0x03, 0x04 to the device and receive
4 bytes in return.

BYTE command[2] = {0x55, 0x66};
BYTE xdatal[4] =

{
0x01, 0x02, 0x03, 0x04 // send data

1

DeviceIoControl (hDevice, IOCTL_SPI_TRANSMIT,
command, 2, xdata, 4, NULL, NULL);

Listing 3: Example IOCTL_SP|_EXCHANGE

Remarks:

e This function needs one array going in, and one array going in and returning data out.
Therefore this call uses both data pointers of the DeviceIoControl () for providing IN
data, lpInBuffer and lpOutBuffer. This is a little bit unusual, but works nonethe-
less.

6.3.3 IOCTL_DRIVER_GETINFO

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_DRIVER_GETINFO

lpInBuffer Unused, set to NULL

dwInBufferSize Unused, set to 0

lpOutBuffer Pointer to a DRIVER_INFO structure receiving the driver
version (see below)

dwOutBufferSize sizeof (DRIVER_INFO)

lpReturned The referenced value will be set to dwOutBufferSize if

pointer is not NULL

F

17

NSPI Reference

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError () for details
=0 Success

Description:

This command retrieves the version information of the NSPI driver.

typedef struct tagDRIVER_INFO

{
WORD wVerMajor;
WORD wVerMinor;
DWORD dwTemp[15];
} DRIVER_INFO, *PDRIVER_INFO;

Listing 4: DRIVER_INFO structure

Entry dwTemp [] in this structure is reserved for future extensions and is currently unused.
Just ignore it.

Please note, as this command is also available for other F&S drivers, DRIVER_INFO and
IOCTL_DRIVER_GETINFO are defined in a separate header file £s_driverinfo.h, that
should be available in the newest SDK for your board.

Example:
Get the driver version and print it to stdout.

#include <fs_driverinfo.h>

DRIVER_INFO cInfo;
if (!DevicelIoControl (hDevice, IOCTL_DRIVER_GETINFO, NULL, O,
&cInfo, sizeof(cInfo), NULL, NULL))

cInfo.wVerMajor = 1; /* Command failed: this is V1.x */
cInfo.wVerMinor 0;

}

printf ("NSPI driver V&%d.%d", cInfo.wVerMajor, cInfo.wVerMinor);

Listing 5: Example IOCTL_DRIVER_GETINFO

18

Header File nspiio.h

7 Header File nspiio.h

The following listing shows the contents of the header file nspiio.h. This file must be in-
cluded in all applications that want to use the NSPI driver. It contains all IOCTL values, con-
stants and data structures required to call the driver.

/***/

/*** ***/
/*** ***/
Vi S P I Device Driver xxx/
/*** ***/
/*** f o r ***/
/*** ***/
VA PicoCOM *xk
/*** ***/
* k% * Kk ok
;*k**;
/*** File: spiio.h xx*/
/*** Authors: Hartmut Keller xxx/
/*** Created: 14.03.2005 xx*/
/*** Modified: 07.07.2008 12:21:06 (MK) xxx/
/*** ***/
/*** Description: xx*/
/*** Include file for SPI IOCTLs. You have to include this file to use the ***/
/*** SPI driver in your own applications. xx*/
/*** ***/
/*** Modification History: WRL)
/*** 03.07.08 MK: Ported to PicoCOMI1 xxx/

/***/

THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright (c) 2005 F&S Elektronik Systeme GmbH

___ */
#ifndef _ SPITIO_H
#define __ SPIIO_H___
#include "WINIOCTL.h" /* CTL_CODE (), METHOD_BUFFERED, ... */
A e Bxperted Definltiong ======c======c======c========== =Y

/* With each clock cycle, the SPI transfer sends one bit on the MOSI line and
receives one bit on the MISO line. Therefore sending and receiving is done
at the same time. After one byte is sent, also a byte is received. This
allows the following transmissions:

1. Send-only: the received bytes are meaningless and therefore discarded.
——> IOCTL_SPI_SEND
2. Receive-only: the sent data bytes are ignored at the device, therefore
don't matter. Usually the value OxFF is used as dummy value.
——> IOCTL_SPI_RECEIVE
3. Send and receive: both data directions carry meaningful data.
3a. Independent transfer: the data bytes to send are taken from one
place and the received data bytes are stored at a different place.
——> IOCTL_SPI_TRANSFER
3b. Replacing transfer: the received data bytes are stored at the same
loaction as the bytes to send, replacing them one after the other.
——> IOCTL_SPI_EXCHANGE

Table of parameters for DeviceIoControl () :

F

19

Header File nspiio.h

Transfer type IN-data OUT-data before / after
IOCTL_SPI_SEND Command & send data (unused) / (unused)
IOCTL_SPI_SEND Command Send data / Send data
IOCTL_SPI_RECEIVE Command (unused) / Received data
IOCTL_SPI_TRANSFER Command & send data (unused) / Received data
IOCTL_SPI_EXCHANGE Command Send data / Received data

Most SPI devices require some command bytes to determine what to do before
transmitting the actual data. This is a send-only phase, i.e. the bytes
received during this phase are discarded. If the device does not require
command bytes, the command part may be left empty.

When using IOCTL_SPI_TRANSFER, the command size is determined by the
difference of the IN-data and OUT-data array sizes. For example if 10 bytes
go in and 8 bytes go out, the command size is 2 bytes.

When using IOCTL_SPI_SEND, you can either send the data as part of the
command or as separate data in the OUT-array. This will generate the same
output to the device, but it allows easier data handling in some cases.*/

/* New IOControlCode values */
#define FILE_DEVICE_SPI 0x0000800A

/* Send command and data to SPI device */
#define IOCTL_SPI_SEND \
CTL_CODE (FILE_DEVICE_SPI, 0x800, METHOD_BUFFERED, FILE_ANY ACCESS)

/* Send command to SPI device and then receive data from SPI device */
#define IOCTL_SPI_RECEIVE \
CTL_CODE (FILE_DEVICE_SPI, 0x801, METHOD_BUFFERED, FILE_ANY ACCESS)

/* Send command and data to SPI device, receive data from SPI device */
#define IOCTL_SPI_TRANSFER \
CTL_CODE (FILE_DEVICE_SPI, 0x802, METHOD_BUFFERED, FILE_ANY ACCESS)

/* Like IOCTL_SPI_TRANSFER, but replace send data with receive data */

#define IOCTL_SPI_EXCHANGE \
CTL_CODE (FILE_DEVICE_SPI, 0x803, METHOD_BUFFERED, FILE_ANY_ACCESS)

#endif /*!__ SPIIO_H__*/

Listing 6: Header File spiio.h

20

Appendix

8 Appendix

Listings

Listing 1: Example IOCTL_NSPI_SEND: ONe AITaYccciiiiiiiiiiiiiiiiieee e 16
Listing 2: Example IOCTL_NSPI_SEND: TWO AITQYS.......ccceiiaiiiiiiiiiiiieee e eeiiiiieeeee e 16
Listing 3: Example IOCTL_SPI_EXCHANGEcoooiiiiiiiiie e 17
Listing 4: DRIVER_INFO StrUCIUIEcooiieeeeee e 18
Listing 5: Example IOCTL_DRIVER_GETINFO ..o 18
Listing 6: Header File SPlO.Noe e 20

List of Figures

Figure 1: SPItiming Parameters.........ueeii i 7
Figure 2: SPITransfer CYClEooi i 10
List of Tables

Table 1: Pin Assignment of SP1 SIgNalScooooiiiiiiii e 2
Table 2: NSPI RegiStry VAIUEScooiiiieeieee et 4
Table 3: NSPI Registry Settings for the SPl Controller...........ooovvveeiiiiiiieeee 5
TaBIE 41 SPIMOUES ...ttt e 7
Table 5: Chip-Select deCOTINGoooiiiiiei e 8
Table 6: IOCTL command COAeS fOr V1.X ..ccoiiiiiiiiiiiiii e 14

Important Notice

The information in this publication has been carefully checked and is believed to be
entirely accurate at the time of publication. F&S Elektronik Systeme assumes no re-
sponsibility, however, for possible errors or omissions, or for any consequences re-
sulting from the use of the information contained in this documentation.

F&S Elektronik Systeme reserves the right to make changes in its products or prod-
uct specifications or product documentation with the intent to improve function or de-

F

21

Appendix

sign at any time and without notice and is not required to update this documentation
to reflect such changes.

F&S Elektronik Systeme makes no warranty or guarantee regarding the suitability of
its products for any particular purpose, nor does F&S Elektronik Systeme assume
any liability arising out of the documentation or use of any product and specifically
disclaims any and all liability, including without limitation any consequential or inci-
dental damages.

Products are not designed, intended, or authorised for use as components in sys-
tems intended for applications intended to support or sustain life, or for any other ap-
plication in which the failure of the product from F&S Elektronik Systeme could cre-
ate a situation where personal injury or death may occur. Should the Buyer purchase
or use a F&S Elektronik Systeme product for any such unintended or unauthorised
application, the Buyer shall indemnify and hold F&S Elektronik Systeme and its offi-
cers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, expenses, and reasonable attorney fees arising out of, either di-
rectly or indirectly, any claim of personal injury or death that may be associated with
such unintended or unauthorised use, even if such claim alleges that F&S Elektronik
Systeme was negligent regarding the design or manufacture of said product.

22

