

Software Documentation

F&S CAN Driver

Version 2.06
2015-03-23

© F&S Elektronik Systeme GmbH

Untere Waldplätze 23

D-70569 Stuttgart

Fon: +49(0)711-123722-0

Fax: +49(0)711 – 123722-99

Introduction

Overview

The Controller Area Network (CAN) is a two wire bus with differential signals to communi-
cate between different kinds of sensors, controllers and other devices. It is often used in au-
tomotive and industrial applications. The transfer speed can be up to 1 Mbit/s.
Boards from F&S offer one or two CAN ports for direct integration of the device into a CAN
network.
This documentation describes the functionality of the CANDRV driver, how to install this
driver and how to use it in own software applications. Please check if the driver is installed
and running. You can do this by opening the tool remote registry editor and search the en-

tries in [HKLM\Drivers\Active]. If you don’t’ find the driver, you have to install it for

each CAN interface.

We provide a collection of small CAN sample programs called CanTestSuite to show the

usage of the driver and to help configuring and testing your applications. The source code of
these programs is also available (see appendix).

Software Documentation F&S CAN Driver | 3 of 95

Table of Content

Introduction 2

Overview ... 2

Table of Content 3

1 CAN Bus Operation 5

2 Acceptance Filters 7

3 CAN Bus Network Example 8

4 Send Buffer and Event Queue 10

5 Possible interface conflicts 11

6 Installing the CAN Software Driver 12

6.1 Installation with the CAB File ... 12
6.2 Manual Installation .. 13
6.3 Detailed Description of the Registry Values ... 15

7 Using the CAN Driver in Applications 20

7.1 Driver Interface .. 20
7.2 Textual and Binary Message Representation .. 21
7.3 Virtual Send and Receive Channels .. 22
7.4 Send Buffer vs. Single Message Mode .. 24
7.5 Available Events .. 25
7.6 Event Mask ... 25
7.7 Counter for Lost Events ... 26
7.8 Timeouts ... 26
7.9 Frame ID and Acceptance Filter Alignment ... 27
7.10 New Features of Version 2.x ... 30

8 CAN Driver Reference 31

8.1 CreateFile() ... 31
8.2 CloseHandle() ... 32
8.3 WriteFile() ... 33
8.4 ReadFile() ... 36
8.5 SetCommTimeouts() ... 39
8.6 GetCommTimeouts() ... 41
8.7 SetCommMask() ... 42
8.8 GetCommMask() ... 44
8.9 WaitCommEvent() ... 45
8.10 DeviceIoControl() .. 46
8.11 IOCTL_CAN_WRITE_ACCEPTANCE_FILTER .. 48
8.12 IOCTL_CAN_READ_ACCEPTANCE_FILTER .. 50
8.13 IOCTL_CAN_SET_BAUDRATE .. 51
8.14 IOCTL_CAN_GET_BAUDRATE .. 52
8.15 IOCTL_CAN_SET_BAUDRATE_BY_CONSTANT .. 53
8.16 IOCTL_CAN_GET_BAUDRATE_BY_CONSTANT .. 54
8.17 IOCTL_CAN_SET_CAN_MODE ... 55
8.18 IOCTL_CAN_SET_DEFAULT_FRAME_FORMAT .. 56
8.19 IOCTL_CAN_WRITE_TRANSMIT_DATA ... 57
8.20 IOCTL_CAN_READ_EVENT_DATA ... 60
8.21 IOCTL_CAN_READ_TIME .. 62

Software Documentation F&S CAN Driver | 4 of 95

8.22 IOCTL_CAN_READ_PROPERTIES ... 63
8.23 IOCTL_CAN_SET_COMMAND... 65
8.24 IOCTL_CAN_READ_REGISTER .. 68
8.25 IOCTL_CAN_WRITE_REGISTER ... 69
8.26 IOCTL_CAN_READ_REGISTER_RM ... 70
8.27 IOCTL_CAN_WRITE_REGISTER_RM ... 71
8.28 IOCTL_CAN_INIT ... 72
8.29 IOCTL_CAN_TEST_DEVICE .. 73

9 Appendix A 74

9.1 canbusio.h ... 74

10 Appendix B 77

10.1 CanTestSuite .. 77
10.2 CanWrite ... 78
10.3 CanRead ... 81
10.4 CanCheck ... 85

11 Important Notice 93

12 Warranty Terms 94

Software Documentation F&S CAN Driver | 5 of 95

1 CAN Bus Operation

Data can be sent in short messages across the CAN bus. These messages are packed into
data frames. A data frame consists of

 a network-wide unique identifier (ID), usually identifying a function of the affected device,

 a Remote Transmission Request flag (RTR), set when requesting information from a re-
mote device,

 a Data Length Code (DLC), telling the length of the message data (0..8),

 and up to eight message data bytes (MSG[0..7]).
There are additional data bits for synchronisation, error checking (CRC) and acknowledge-
ment, but these are of no big importance when only using the CAN driver. They are all han-
dled within the hardware controller or the software driver. Therefore we’ll only present a sim-
plified view of the frames.

Frame Types
There exist two different types of frames: Standard Frames and Extended Frames. Standard
Frames have an ID of 11 bit length. CAN networks using only Standard Frames are conform-
ing to the CAN2.0A standard (also called BasiCan).

Extended Frames have an ID of 29 bit length. Any network that is capable of using Extended
Frames must also be capable of accepting Standard Frames, in any random order. There-
fore networks using Standard and Extended Frames are conforming to the CAN2.0B stand-
ard (also called PeliCan).

A device can start sending a frame when the bus is idle. If another device is starting to send
at the same time, this is recognised at the first different bit. As bits are recessive (1) or domi-
nant (0) on the bus, the dominant bit wins. This usually happens while transmitting the ID.
Therefore the device with the lower ID (=higher priority) wins. This device can continue to
send.
The other device must immediately stop sending. It is said to have lost bus arbitration. This
device can try to send again when the current frame is finished. If no device with higher pri-
ority sends at the same time anymore, it can eventually transmit its complete frame.

CAN Identifiers
Which CAN identifier is used for which purpose is basically up to the designer of the CAN
network. The only restriction is that IDs must be unique. However there exist different stand-
ards like DeviceNet and CanOpen that have predefined mappings of device types and func-
tions to IDs. Please refer to these standards when using the CAN driver in a network togeth-
er with such devices.
There is a CanOpen stack available for the F&S CAN driver from a third party company.
Please contact F&S if you are interested in using it.

Remote Transmission Request (RTR)
Usually the CAN ID identifies some kind of function of a specific device. For example a sen-
sor can regularly report its measured value with a specific ID. Or a controller can switch an
actor with a specific function on or off by sending a message with this special function ID.
Sometimes one device needs information from another device at a specific point of time, for
example if a sensor does not report its value automatically but must be polled. This is done
by a request frame. The controlling device sends a CAN frame with the function ID of the

11-bit ID RTR DLC MSG[0] ... MSG[7]

Standard Frame:

Extended Frame:

29-bit ID RTR DLC MSG[0] ... MSG[7]

Software Documentation F&S CAN Driver | 6 of 95

device to poll and the RTR bit set. The polled device then may respond directly within the
same frame (overruling the recessive RTR bit of the original sender, taking over the trans-
mission and directly sending the data), or in a separate data frame later.

Data Length Code (DLC) And Data Bytes
The data length code defines how many data bytes are appended to the frame. The shortest
frame has no data bytes (DLC=0) and the longest data frame has eight data bytes (DLC=8).
Remark: As DLC is 4 bits in the CAN frame, it is theoretically possible to set it to a value
higher than 8. This is discouraged by the CAN standard and some CAN devices my even
interpret this as an error. Nonetheless this CAN driver will transfer DLC as it is set, i.e. 0..15.
But all values higher than 8 will still only transport eight data bytes.

Software Documentation F&S CAN Driver | 7 of 95

2 Acceptance Filters

All devices connected to the CAN bus basically can see and receive any message. However
usually only a few messages are relevant for a specific device. Therefore it is possible to re-
strict the reception of messages to specific message IDs. This may be a single ID, a range of
IDs, or even a group of different IDs or ID ranges. This process is called acceptance filtering.
Only those messages that match the given filter IDs are received, all other messages on the
CAN bus are ignored.

An Acceptance Filter consists of a code and a mask. The acceptance code determines the
ID to match. The acceptance mask tells which bits of the received frame ID are relevant and
must match exactly to the acceptance code to be accepted and which bits of the ID don’t
matter and are always accepted.

Normally only the ID of the incoming frame is checked by the acceptance filter. But there is
an exception. Most CAN controllers have a special feature when comparing Standard Frame
IDs: here they can extend the acceptance test to the first two data bytes. Then not only the
11-bit ID is tested, but also up to 16 bits of the first two data bytes.
This feature is supported by this CAN driver. But please note that this is only possible with
Standard Frames. When receiving Extended Frames, the test can only check the 29 bits of
the extended ID and no additional data bytes.

Always accepted

Must match Bit rejected

Bit accepted Legend:

1 0 1 0 0 1 1 1 0 1 1 Incoming Frame ID

x x 1 0 1 x x x 1 1 x Acceptance Code

1 1 0 0 0 1 1 1 0 0 1 Acceptance Mask

Message not accepted

= = ≠ ≠ =

CAN Bus

User

Application

Acceptance
Filter

Incoming
Message

No match:
ignore

CAN Bus

User

Application

Acceptance
Filter

Incoming
Message

Match:
accept

Software Documentation F&S CAN Driver | 8 of 95

3 CAN Bus Network Example

Let’s consider a larger machine, which can get hot in some places. There are cooling fans
installed, but they should only run selectively if the specific machine part is getting too hot.
Therefore the cooling fans are connected together with a set of temperature sensors and a
controlling unit in a CAN network. And there are also some other devices present.

Let’s assume that the temperature value of a sensor can be coded in eight bits and will be
sent every second. And the signal of switching a cooling fan on or off is coded in one bit and
is only sent when required. Let’s assume further that a temperature sensor has an ID of
0x100 and a cooling fan of 0x200.
Then the network could work like this.
A temperature sensor sends every second a frame of the following type:

It does not need to react to any incoming messages.

The controller accepts all messages with ID 0x100. Therefore it will have an acceptance filter
with code = 0x100 and a mask that requires all bits to match the ID.
It will look into the first data byte to determine the number of the temperature sensor and de-
pending on the new temperature in the second data byte it will probably send a message to
the corresponding cooling fan to switch on or off.

A cooling fan does not send any message, but reacts to messages with ID=0x200. However
Fan 1 is only interested in those messages directed to Fan 1, not in messages for other fan
numbers. Fan 2 is only interested in messages for Fan 2, and so on. This shows that it
makes sense to have the possibility to extend the acceptance filter to the first data byte. A
cooling fan best configures its acceptance mask to match ID and first data byte and the ac-
ceptance code to 0x200 plus the local fan number in the data section.

Remark
When only a few different device types are in a CAN network, the IDs themselves can be
used to transmit data. This makes transmission extremely efficient.
For example if the above network only has at most four temperature sensors, both the sen-
sor number and the temperature could be coded in 10 bits within the ID itself, leaving the last
bit of the ID as marker for temperature sensor or other device. Then the cooling fans could
be coded as a group of the remaining device IDs and there would still be room for other de-
vices. Here is a coding that would work more efficiently. However it is not as flexible any-
more as the first solution.

Temp.
Sensor 1

Cooling
Fan 1

Temp.
Sensor 2

Cooling
Fan 2

Other
Device

CAN bus

Controller

ID=0x100 RTR=0 DLC=2 Sensor Number Temperature

ID=0x200 RTR=0 DLC=2 Fan Number 0=off/1=on

Software Documentation F&S CAN Driver | 9 of 95

ID (binary) Meaning

1 nn tttttttt Report temperature t (0..255) of

sensor n (0..3)

011 11111 nn s Switch cooling fan n (0..3) to

state s (on=1, off=0)

0xx xxxxx yyy,

xxxxxxx!=111111

1

Messages from any other devic-
es

If identifier 1 10 01010000 would be received on the CAN bus, this would mean that tem-

perature sensor 2 reports the current temperature value 0x50. If the ID 011 11111 01 0 is

received on the CAN bus, this would mean that cooling fan 1 should be switched off. If ID

001 00101 100 is received on the bus, this is the message of some other device on the

bus.
This bus configuration shows the need for more complex acceptance filters.

 The controller is interested in any message coming from any temperature sensor. There-

fore it would set its acceptance filter to only check the most significant ID bit to be 1 and

accept all other ID bits. By looking at the actually received ID, it could determine which
sensor sent which temperature.

Acceptance mask: 011 11111111 (0=check, 1=accept)

Acceptance code: 1xx xxxxxxxx (x=don’t care)

 The cooling fans are interested in the switching messages. Therefore they would set

their acceptance filters to check the eight most significant bits to be exactly 01111111,

the next two bits to be the own fan number and to accept the last bit no matter what it is.
They would then analyse this last bit of the actually received ID and switch the fan on or
off. Here e.g. the settings for Fan 1:

Acceptance mask: 000 00000001 (0=check, 1=accept)

Acceptance code: 011 1111101x (x=don’t care)

Software Documentation F&S CAN Driver | 10 of 95

4 Send Buffer and Event Queue

Transmission on the CAN bus takes some time. Therefore data that is to be sent on the CAN
bus usually is not sent directly, but stored in the so-called Send Buffer. This allows the send-
ing function to return immediately.
Then the CAN service routine, a separate background thread of the driver, is responsible for
actually transmitting these entries of the send buffer on the CAN bus as fast as possible.
Every time a message is completed by the controller hardware, it takes the next message
from the send buffer and serves it to the controller to be transmitted.

On the other side everything that happens on the CAN bus is handled as an event. An in-
coming message for example is one type of event. Some error that happened on the bus is
another type of event. And there are more types of events. These events are stored in an
event queue within the driver and the user application can react to them.
It is important to understand that there is no separate receive buffer reserved only for re-
ceived messages. All incoming messages are stored in the standard event queue together
with all other kinds of possible CAN bus events.

When reading from the CAN device, this is actually fetching the next event from the event
queue.

CAN Bus

User

Application

Message

CAN Driver

CAN Controller

Transmit
Register

Send Buffer

Service Thread

Send Function

CAN Bus

User

Application

CAN Driver

Receive
Register

Event Queue

Receive Function

Service Thread

CAN Con-
troller

Incoming Messages Other Events

Software Documentation F&S CAN Driver | 11 of 95

5 Possible interface conflicts

On some modules there is a mutual interference between CAN and SPI interface. This is
caused by the fact that the CAN interface internally is connected to the same SPI controller
that is used for the external so called (Native)SPI interface. This might lead into malfunction
as both drivers would try to access the SPI bus simultaneously.
To overcome this restriction, the “DirectInterface” feature of the CAN driver must be disa-
bled. In doing so the CAN driver will also use the available SPI driver to access CAN control-
ler.
Here is a list of modules that are affected by this mutual conflict:

Board

PicoCOM1

PicoCOM2

PicoCOM4

For details how to set up the proper configuration, please refer to the platform dependent
readme file that comes with the CAN driver package. Or contact support@fs-net.de for sup-
port.
Note:
Please note that disabling the DirectInterface is only required if CAN interface and (Na-
tive)SPI interface are used simultaneously.

mailto:support@fs-net.de

Software Documentation F&S CAN Driver | 12 of 95

6 Installing the CAN Software Driver

The CANDRV driver is usually already pre-installed on the board as CID1:. If not, there may

be two different possibilities for installation.

6.1 Installation with the CAB File

If you have the Windows Cabinet File candrv.cab available, just copy this file to the board

(e.g. to the root directory). Then open the command line and type the following command:
wceload /noui candrv.cab

This will install the CAN driver as CID1: with the default settings. If you need other settings,

you can edit the registry values anytime after installation is complete.

Software Documentation F&S CAN Driver | 13 of 95

6.2 Manual Installation

You can also do the installation by hand. This requires setting some registry entries. Installa-
tion of the CAN driver takes place in the registry under
[HKLM\Drivers\BuiltIn\CID1]

Entry Type Value Description

Dll String can-

drv.dll

Driver DLL

Friend-

lyName

String PicoCOM

CAN driv-

er

Description

Prefix String CID For CID1:

Index DWOR
D

1 For CID1:

Order DWOR
D

20 Load sequence

DeviceArray

Index

DWOR
D

0 Use CAN port
device 0

Ioctl DWOR
D

4 Call post initial-
isation func-
tion

TxMode DWOR
D

7 Transmit
mode(*)

SendBuffer

Size

DWOR
D

100 Maximum
number of
messages in
Send Buffer (*)

EventQueue

Size

DWOR
D

200 Maximum
number of
events in Event
Queue

Priority256 DWOR
D

103 Thread priority

Debug DWOR
D

0 Debug verbosi-
ty

Baudrate DWOR
D

1000000 Default baud
rate

CanMode2B DWOR
D

0 Default CAN
bus mode

Format DWOR
D

0 Default frame
format

Virtualize DWOR
D

0 Virtual CAN
bus mode

Acceptance

Code

DWOR
D

0 Code value for
default ac-
ceptance filter

Software Documentation F&S CAN Driver | 14 of 95

(*)

Acceptance

Mask

DWOR
D

0 Mask value for
default ac-
ceptance filter
(*)

MaskActive DWOR
D

0 Acceptance
filter mask logic
(*)

Align DWOR
D

0 ID and ac-
ceptance filter
alignment (*)

IRQ DWOR
D

30 Default IRQ for
CAN controller

Direct

Interface

DWOR
D

0 How to access
SPI port (*)(**)

SPIDevice String SPI3: Device name of
the SPI port (**)

(*) Registry entry available since V2.x
(**) Registry entry only available on PicoCOM1/PicoCOM2.
Most of the values will get meaningful defaults if omitted, only those values highlighted in

grey above really have to be given. The library candrv.dll has to be stored in flash

memory into the \FFSDISK directory, if it is not already pre-loaded in the kernel.

Software Documentation F&S CAN Driver | 15 of 95

6.3 Detailed Description of the Registry Values

Dll

Name of the CAN driver library, usually CANDRV.DLL. If the driver is not loaded, try using

the full path to the library here.

FriendlyName

Short description of the driver function.

Prefix

Three upper case characters used for the device name. Usually CID for “CAN Interface

Driver”.

Index

The number of the device name. This has to be a number from 0 to 9. Usually the first (or
only) device gets number 1.

Order

All device drivers are started by the Device Manager. This value decides in what sequence
the drivers are loaded: the higher the number the later they are loaded.

IoCtl

When this entry is set, the Device Manager will automatically open the device once after the

driver is loaded and calls function DeviceIoControl() with this number as argument.

Then the device is closed again.
DeviceArrayIndex

This zero based index tells the driver which CAN port to use by this driver instance. The

PicoCOM1, PicoCOM2 and PicoMOD3 only support one CAN port, therefore this entry De-

viceArrayIndex must be set to 0.

TxMode

This entry sets the transmission mode. Every bit of TxMode controls a different setting. See

page 24 for more details.

Bit Value Meaning

0 0 Single message mode: a message must be transmitted before the
send function returns;
no send buffer is used

1 Send buffer mode: a message is placed into the send buffer and the
send function returns immediately

1 0 Don’t use CANBUS_EVENT_TRANSMITTED

1 Generate CANBUS_EVENT_TRANSMITTED when a message was sent

2 0 A message is considered as sent when it is taken from the send buffer
and placed into the hardware transmit register of the controller.

1 A message is considered as sent when it was actually transmitted by
the controller.

Table 1: Registry value - TxMode

Software Documentation F&S CAN Driver | 16 of 95

UseTxIRQ (obsolete)

V1.x of the CAN driver used a registry entry UseTxIRQ which could be 0 or 1. This entry is

still recognised by the V2.x driver to not break compatibility, but TxMode is preferred now.

Setting UseTxIRQ=0 is the same as setting TxMode=0, setting UseTxIRQ=1 is the same as

setting TxMode=7.

SendBufferSize

If Send Buffer Mode is activated in TxMode, the driver uses a send buffer for transmitting

messages. SendBufferSize defines how many messages should fit into that buffer.

If Single Message Mode is activated in TxMode, no send buffer is used and SendBuffer-

Size is ignored.

EventQueueSize

Every action happening on the CAN bus may generate an event that is stored in the event

queue. EventQueueSize defines how many incoming events have room in the event

queue. If events arrive when the queue is full, these events are lost.

Priority256

The driver has a background service thread, taking messages from the send buffer and put-
ting them to the CAN controller or taking messages and events from the CAN controller and
putting them into the event queue.

Priority256 defines the Windows CE thread priority for this service thread. A lower num-

ber means higher priority, a higher number means lower priority. Usually Windows CE de-

vice drivers use priority values around 100.

Debug

By setting Debug to a value other than zero, the driver will print additional diagnostics mes-

sages to the serial debug port to help analysing any errors. Please note that this might slow

down the driver performance significantly. If not needed. keep this value at 0.

Baudrate

The Baudrate entry tells the driver which baud rate to use on the CAN bus (in Hz or bits/s).

The baud rate can also be modified at runtime with the functions

IOCTL_CAN_SET_BAUDRATE_BY_CONSTANT and IOCTL_CAN_SET_BAUDRATE.

Software Documentation F&S CAN Driver | 17 of 95

CanMode2B

This entry sets the default operation mode of the CAN controller, CAN2.0A or CAN2.0B. This
has influence on the frame format that can be used.
The operation mode can also be modified at runtime with the function

IOCTL_CAN_SET_CAN_MODE.

CanMode2B Meaning

0 CANBUS_FORMAT_CAN_2_0_A:

Use Can2.0A mode (Standard Frames only)

1 CANBUS_FORMAT_CAN_2_0_B:

Use Can2.0B mode (Standard and/or Extended Frames)

Table 2: Registry value – CanMode2B

Format

Set the default frame format to be used when sending and receiving messages. This can

also be modified at runtime with the function IOCTL_CAN_SET_DEFAULT_FRAME_FORMAT.

Format Meaning

0 CANBUS_TRANS_FMT_DEFAULT

Use the default format for this mode:

CanMode2B=0: Standard Frames

CanMode2B=1: Extended Frames

1 CANBUS_TRANS_FMT_STD

Use Standard Frames

2 CANBUS_TRANS_FMT_EXT

Use Extended Frames

Table 3: Registry value - Format

Virtualize

Entry Virtualize decides whether one file handle “sees” the messages transmitted by an-

other file handle or not. For a detailed description of Virtualize Mode see also page 66.

Virtualize Meaning

0 No virtual CAN bus. A message that is sent can only be received by other
devices. No other open file handle on this board will receive this message,
even if the acceptance filter matches.

1 Use virtual CAN bus. Every other open file handle on this board with
matching acceptance filter will receive a sent message as if it had actually
been transmitted over the CAN bus.

Table 4: Registry value - Virtualize

In any case only the file handle that sent the message will get an event

CANBUS_EVENT_TRANSMITTED.

This mode can also be switched at runtime with the function

IOCTL_CAN_SET_COMMAND.using the command values CANBUS_CMD_VIRTUALIZE_ON to

switch the mode to 1 and CANBUS_CMD_VIRTUALIZE_OFF to switch the mode to 0.

Software Documentation F&S CAN Driver | 18 of 95

AcceptanceCode

This is the default setting for the code part of the acceptance filter. The code is compared to

every received message ID and, depending on the acceptance mask, decides whether the
incoming message is accepted or ignored.
The acceptance code can be modified at runtime with the function

IOCTL_CAN_WRITE_ACCEPTANCE_FILTER.

AcceptanceMask

This is the default setting for the mask part of the acceptance filter. The mask decides which

bits of the incoming message ID must match the acceptance code and which bits are always
accepted.
The acceptance mask can be modified at runtime with the function

IOCTL_CAN_WRITE_ACCEPTANCE_FILTER.

MaskActive

The MaskActive entry defines the logic of the acceptance mask, i.e. which bits of the in-

coming message ID are always accepted and which bits require a match to the acceptance
code.

MaskActive set-

ting
Acceptance Mask bit ID bit of arriving message...

0
0 ...must match acceptance code bit

1 ...is always accepted

1
0 ...is always accepted

1 ...must match acceptance code bit

Table 5: Registry value - MaskActive

Align

CAN message IDs, acceptance codes and acceptance masks are passed to the driver as
unsigned 32-bit values. Depending on the application, it might be useful to have them all
aligned left (starting at bit 31), aligned at bit 28 (to make it similar to Extended Frames),
aligned at bit 10 (to make it similar to Standard Frames), or each aligned to its individual

size. This can be configured with the Align entry.

Align Standard-
Frame-ID

Standard-Frame-Filter
(Code & Mask)

Extended-
Frame-ID

Extended-Frame-
Filter

0 Bits 10..0 ID: Bits 31..21
Data: Bits 15..0

Bits 28..0 ID: Bits 31..3
no Data

1 Bits 10..0 ID: Bits 10..0
no Data

Bits 10..0 ID: Bits 10..0
no Data

2 Bits 28..18 ID: Bits 28..18
Data: Bits 15..0

Bits 28..0 ID: Bits 28..0
no Data

3 Bits 31..21 ID: Bits 31..21
Data: Bits 15..0

Bits 31..3 ID: Bits 31..3
no Data

Table 6: Registry value - Align

Software Documentation F&S CAN Driver | 19 of 95

If you used V1.x of the driver and want the same behavior in V2.x, then use the following

setting, depending on the CAN mode you used (registry entry CanMode2B).

CanMode2

B
Align

0 1

1 0

IRQ

This entry tells the CAN driver on which interrupt source the CAN controller will signal its in-
terrupts. This is hardware dependent and usually does not require any modification by the
user.

DirectInterface
The CAN controller on the PicoCOM1 and PicoCOM2 is accessed via SPI. Starting with
V2.4, the driver can be used together with the SPI driver. This requires that the CAN driver
accesses the SPI port via the standard SPI driver. The previous method, where the CAN
driver directly accessed the SPI port is still available as Direct Interface.

DirectInterface Meaning

0 Use SPI driver with device name given in SPIDevice;

this allows using CAN and SPI driver in parallel.

1 Directly access the SPI port; this setting is only allowed if
no SPI driver is used on the SPI1 bus.

Table 7: Registry value - DirectInterface

SPIDevice

This entry defines the name of the SPI device to use when DirectInterface is set to 0.

Software Documentation F&S CAN Driver | 20 of 95

7 Using the CAN Driver in Applications

7.1 Driver Interface

All CAN driver related values and data structures are defined in the header file canbu-

sio.h. This file must be included in any program using the CAN driver interface. It is listed

in Appendix A (page 74).
The driver uses the standard Stream Driver Interface. That means access is done by open-

ing a device file (usually CID1:) and then using functions like WriteFile() and Read-

File() to send and receive data. In addition the driver supports timeouts and waiting for

events like a serial line.

Special CAN related functions are available as I/O control commands via function De-

viceIoControl(). In this document, we will just use the I/O control command name to

refer to a call of DeviceIoControl() with this command value.

The following table lists all available functions for the CAN driver. They are discussed in de-
tail in the next chapter.

Function Description

CreateFile() Opens the CAN interface for READ and/or
WRITE access.

CloseHandle() Closes the previously opened CAN interface.

ReadFile() Reads the next event (as formatted text) from
the queue.

WriteFile() Sends a message (formatted as text) to the
CAN bus.

DeviceIoControl() Calls a special control function of the CAN
driver.

SetCommTimeouts() Changes Timeouts for read and write access.

GetCommTimeouts() Returns current settings for read and write
timeouts.

SetCommMask() Sets the mask which events are recorded in
the queue.

GetCommMask() Returns current event mask.

WaitCommEvent() Waits for an event.

Table 8: Driver Interface Functions

Software Documentation F&S CAN Driver | 21 of 95

7.2 Textual and Binary Message Representation

The driver has two different ways of sending data. When using function WriteFile(), the

data to send must be prepared as a specially formatted text, for example by using

fprintf() or similar functions. Sending data directly as a binary structure is possible with

IOCTL_CAN_WRITE_TRANSMIT_DATA. Which way you choose depends on your prefer-

ences, both ways will send the same data frame over the CAN bus.

Every event happening on the CAN bus is reported to the driver and is stored in an event
queue. Reading from the CAN driver means reading the next event from the event queue.

There are also two different ways of reading this event data. Function ReadFile() returns

a textual representation of the data and IOCTL_CAN_READ_EVENT_DATA returns a binary

structure with the data. Again which way you choose is up to you. If on one hand the re-
ceived message only needs to be output, then the textual representation may directly suit
your needs. On the other hand, if different types of events should be distinguished, it is usu-
ally easier using the binary way as it avoids having to parse the textual data first.

Text Form Binary Form

WriteFile()
IOCTL_CAN_WRITE

_TRANSMIT_DATA

Send Buffer

Text Form Binary Form

ReadFile() IOCTL_CAN_READ

_EVENT_DATA

Event Queue

Software Documentation F&S CAN Driver | 22 of 95

7.3 Virtual Send and Receive Channels

Sending and receiving through the CAN driver is completely independent from each other.
You can open the CAN device several times and each file handle will behave as if it has an
own direct channel to the CAN bus. We call this virtual send and virtual receive channels.

The number of available virtual channels depends on the CAN controller hardware. On the
PicoCOM1, PicoCOM2 and PicoMOD3 you can open up to three virtual send channels and
up to two virtual receive channels, because the CAN controller has three distinct transmit
registers and two distinct receive registers.

Every time you open the CAN device with WRITE access (using GENERIC_WRITE), you get

a new virtual send channel to the CAN bus with an own send buffer. The size of the send
buffer can be configured in the registry. If the send buffer is full, the send function will block,
unless a timeout is specified.

Every time you open the CAN device with READ access (using GENERIC_READ), you get a

new virtual receive channel to the CAN bus with own event queue, acceptance filter and
event mask. The size of the event queue can be configured in the registry.

CAN Bus

User

Application
CAN Driver

CAN Con-

troller

Virtual Send
Channel 0

Virtual Send
Channel 1

Virtual Send
Channel 2

Virtual Receive
Channel 0

Virtual Receive
Channel 1

File Handle 1
WRITE Access

File Handle 2
WRITE Access

File Handle 3
READ+WRITE

Access

File Handle 4
READ Access

Virtual Send Channel

Send Buffer

Virtual Receive Channel

Event Queue Event Queue

Event
Mask

Accep-
tance
Filter

Event Sources

Software Documentation F&S CAN Driver | 23 of 95

The possibility to have an own acceptance filter for each virtual receive channel allows dif-
ferent applications to use the CAN bus as if they were separate CAN devices attached sepa-
rately to the CAN bus.

Or it allows one application to react to completely different acceptance filters that can not be
represented as a single pair of acceptance code and mask.

Device #3

Device #2

Device #1

CAN Bus

User
Application

#1

CAN Driver

CAN Con-

troller

Virtual Send
Channel 0

Virtual Send
Channel 1

Virtual Send
Channel 2

Virtual Receive
Channel 0

Virtual Receive
Channel 1

User
Application

#1

User
Application

#1

CAN Bus

User

Application
CAN Driver

CAN Con-

troller

Virtual Send
Channel

Acceptance
Filter 1

Acceptance
Filter 2

Acceptance
Filter 3

Software Documentation F&S CAN Driver | 24 of 95

7.4 Send Buffer vs. Single Message Mode

The CAN driver can either run in Send Buffer Mode or in Single Message Mode (see registry

entry TxMode).

In Send Buffer Mode, the sending function simply stores the message to send in the send
buffer and then returns immediately. The rest is done by the background CAN service
thread. It takes the message from the send buffer and puts it into the transmit register of the
CAN controller.
The only way to tell if and when a message was actually sent is by activating

CANBUS_EVENT_TRANSMITTED events.

When Single Message Mode is active, no send buffer is used. Instead the sending function
itself puts the message into the transmit register of the CAN controller. If this register is still
busy from before, it has to wait until the previous message is transmitted.

The point of time when a message is considered as transmitted can also be configured in

TxMode. This can either be the time when the message is stored in the transmit register of

the CAN controller , or the time when the message is completely transmitted on the CAN

bus . At this configured point of time, event CANBUS_EVENT_TRANSMITTED is generated

and the sending function in Single Message Mode returns.

User

Application

Message

CAN Bus

CAN Driver
CAN Controller

Transmit
Register

CAN Bus

User

Application

Message

CAN Driver
CAN Controller

Transmit
Register

Send Buffer

Event Queue

CANBUS_EVENT

_TRANSMITTED

Software Documentation F&S CAN Driver | 25 of 95

7.5 Available Events

Here is a list of possible events generated by the CAN driver.

Event name Description

CANBUS_EVENT_RECEIVED A message was received and accepted

CANBUS_EVENT_TRANSMITTED A message was successfully transmitted

CANBUS_EVENT_ABORTED A transmit operation was aborted

CANBUS_EVENT_ARBITRATION_LOST A message to be sent lost bus arbitration

CANBUS_EVENT_DEVICE_CHANGED The CAN controller was set to a new configuration

CANBUS_EVENT_ENTERING_STANDBY The CAN controller was switched to sleep mode

CANBUS_EVENT_LEAVING_STANDBY The CAN controller was awaken from sleep mode

CANBUS_EVENT_OVERRUN The receive register of the CAN controller could not take a mes-
sage because the previous message was not yet fetched by the
driver

CANBUS_EVENT_WARNING There were several frame errors on the bus

CANBUS_EVENT_PASSIVE Even more frame errors; the CAN controller switched to passive
mode

CANBUS_EVENT_BUS_ERROR Still more errors, the CAN controller went offline

Table 9: CAN Events

7.6 Event Mask

By setting an event mask with SetCommMask(), it is possible to tell the driver which types

of events are interesting to the application and should actually be stored in the queue. All
other events are discarded then. This may help reducing the number of events having to re-
act to. The event mask is stored for each virtual receive channel separately.

As the event queue itself is influenced by the event mask, this impacts all available read
functions.

Remark

When switching with SetCommMask() to a mask with fewer event types than before, and

there were events waiting in the queue with these now missing types, these events are im-
mediately deleted from the queue. They are irrevocably lost. Even switching back to the pre-
vious event mask will not bring them back again.

CANBUS_EVENT_RECEIVED

CANBUS_EVENT_TRANSMIT

TED
CANBUS_EVENT_BUS_ERROR

CANBUS_EVENT_WARNING

CANBUS_EVENT_PASSIVE

Event Queue

Event Mask Event Sources

Software Documentation F&S CAN Driver | 26 of 95

7.7 Counter for Lost Events

All events not masked by SetCommMask()are stored in the event queue. On a fast CAN

bus with lots of traffic this may happen rather fast. Therefore the user application has to fetch
the events from the event queue as fast as possible. If events arrive faster than they are tak-
en from the queue, the queue will fill more and more until it is eventually completely full.
If still more events arrive when the queue is already full, these events are lost. But at least
the driver counts these lost messages. When there is room again in the queue and the next
event can be stored, the driver will save this count in a special lost field that is available in
the event data structure. Therefore by looking at this field it is possible to tell how many
events were lost since the last message that could be stored in the queue before.
In a normal scenario, the lost counters should be all zero. If an event shows a lost count of
non-zero, this is an alarming sign that your application has reached its maximum capacity of
handling CAN bus events.

7.8 Timeouts

When the send buffer is full, a sending function will block until there is again room in the
send buffer. If the event queue is empty, a receiving function will block until an event arrives.

This behaviour can be influenced by setting timeouts with SetCommTimeouts(). Then the

function will wait at most for the specified time and then returns, even if the function did not

succeed. In this case the return value indicates an error state and GetLastError() will

show ERROR_TIMEOUT.

Software Documentation F&S CAN Driver | 27 of 95

7.9 Frame ID and Acceptance Filter Alignment

The CAN driver uses the current frame format and CAN bus mode to decide whether to send
and accept Standard Frames or Extended Frames.

Mode Format Used Frame Size

CANBUS_FORMAT

_CAN_2_0_A
(any) Standard Frames

CANBUS_FORMAT

_CAN_2_0_B

CANBUS_TRANS

_FMT_STD
Standard Frames

CANBUS_TRANS

_FMT_EXT
Extended Frames

CANBUS_TRANS

_FMT_DEFAULT
Extended Frames

Table 10: ID and Filter Alignment

When switching the CAN bus mode and/or the frame format, the acceptance filters should
be updated, too.
The alignment within the 32-bit values of the identifier (ID) and the acceptance filter values

(AF) depends on the frame format and the registry setting Align.

Accepting Standard Frames
In addition to the 11 bits of the Standard Frame ID, the driver allows to extend the ac-
ceptance filter up to the first two data bytes. The code and mask for these two bytes are giv-
en in bit 15..0. If you don’t want to check these bytes, simply set the acceptance mask bits to
“always accept”.
Align=0: Mixed Alignment

Align=1: Align at bit 10 (no data matching possible)

Align=2: Align at bit 28

 i i i i i i i i i i i

i i i i i i i i i i i d d d d d d d d d d d d d d d d

11-bit Identifier 1st Data
Byte

2nd Data
Byte

11-bit Identifier

ID:

AF:

 i i i i i i i i i i i

 i i i i i i i i i i i

11-bit Identifier

ID:

AF:

 i i i i i i i i i i i d d d d d d d d d d d d d d d d

11-bit Identifier 1st Data
Byte

2nd Data
Byte

11-bit Identifier

 i i i i i i i i i i i ID:

AF:

Software Documentation F&S CAN Driver | 28 of 95

Align=3: Align at bit 31

i i i i i i i i i i i d d d d d d d d d d d d d d d d

11-bit Identifier 1st Data
Byte

2nd Data
Byte

ID:

AF:

i i i i i i i i i i i

11-bit Identifier

Software Documentation F&S CAN Driver | 29 of 95

Accepting Extended Frames
Here the acceptance filter simply checks the 29 identifier bits.

Align=0: Mixed Alignment

Align=1: Align at bit 10 (Remaining bits taken as zero)

Align=2: Align at bit 28

Align=3: Align at bit 31

 i i i i i i i i i i i

 i i i i i i i i i i i

11-bit Identifier

ID:

AF:

29-bit Identifier

 i i i i i ID: i

AF: i

29-bit Identifier

 i i i i i ID: i

29-bit Identifier

 i i i i i AF: i

AF: i

29-bit Identifier

i ID:

Software Documentation F&S CAN Driver | 30 of 95

7.10 New Features of Version 2.x

Version 2.x is a new and completely rewritten version of the CAN driver that was common on
quite a few NetDCU boards of F&S before. We tried to keep the interface as similar as pos-
sible to the previous versions and only introduced new features that do not destroy compati-
bility.
The 1.x versions were mainly targeted to the SJA1000 CAN controller used on these previ-
ous boards. This was also reflected in some special function calls and commands that are
not available on other controllers, and also the documentation often cited the SJA1000 con-
troller directly.
The new version moves the interface to a more generic view of the controller, independent of
any specific hardware. By the concept of virtual send and receive channels, the available
separate hardware transmit and receive registers are mapped to separate file handles. The
send buffers and event queues are made file handle specific, one buffer and/or queue for
each open file handle. Sending and receiving are completely independent from each other
now.

The CANBUS_EVENT_ABORTED is new in V2.x. Also some registry settings:

 TxMode to define the transmission configuration

 SendBufferSize to set the size of the send buffer,

 AcceptanceCode and AcceptanceMask to set a default acceptance filter when open-

ing a virtual receive channel,

 MaskActive to define the bit logic of the acceptance mask, and

 Align to define the alignment of IDs and masks of messages and acceptance filters.

The defaults of these registry settings are chosen in a way that not setting them brings the
same behaviour as in V1.x.
Opening the CAN device several times did not work properly (if at all) in previous versions.
This is working now and is also thread-save, i.e. many different threads can read from and
write to the same file handle without interfering with each other or causing other trouble with-
in the driver. This required quite a lot of synchronisation work, especially when aborting
transmissions or when closing file handles, as there always may be a couple of threads still
waiting for service completion anywhere in the driver that need to be released before the da-
ta structures can be freed.

Software Documentation F&S CAN Driver | 31 of 95

8 CAN Driver Reference

8.1 CreateFile()

Signature:
HANDLE CreateFile(

 LPCTSTR lpFileName, DWORD dwAccess,

 DWORD dwShareMode,

 LPSECURITY_ATTRIBUTES lpSecurity,

 DWORD dwCreation, DWORD dwFlags,

 HANDLE hTemplate

);

Parameters:

lpFileName Device file name, usually “CID1:”

dwAccess Device access (see below)

dwShareMode File share mode (see below)

lpSecurity Ignored, set to NULL

dwCreation Set to OPEN_EXISTING

dwFlags Set to FILE_FLAG_WRITE_THROUGH

hTemplate Ignored, set to 0

Device access dwAccess:

0 Device query mode

GENERIC_READ Open a virtual receive channel only

GENERIC_WRITE Open a virtual send channel only

GENERIC_READ | GENERIC_WRITE

Open virtual send & receive channel

File share mode dwShareMode:

FILE_SHARE_READ Subsequent open operations succeed only if read access

FILE_SHARE_WRITE Subsequent open operations succeed only if write access

Return:

INVALID_HANDLE_VALUE Error, see GetLastError() for details

Otherwise File handle

Description:
Opens the CAN device for the given access and returns a file handle. This file handle is re-
quired for all other functions using this CAN bus. The CAN controller is initialised with the

registry values. It is not necessary to call IOCTL_CAN_INIT after opening the CAN port.

The driver will always use the next free virtual channel. Trying to open the device more often
with a specific access mode than there are virtual channels available by the hardware, will
fail with an error.

A virtual receive channel will use the default acceptance filter AcceptanceCode and Ac-

ceptanceMask from the registry and an event mask with all events enabled, unless new

values are set with IOCTL_CAN_WRITE_ACCEPTANCE_FILTER and SetCommMask().

If the file handle is not required anymore, you have to call function CloseHandle().

Software Documentation F&S CAN Driver | 32 of 95

8.2 CloseHandle()

Signature:
BOOL CloseHandle(HANDLE hDevice);

Parameters:

hDevice Handle to device file

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:

Closes the device file that was opened with CreateFile(). This frees the virtual channels

that were associated with the file handle. They can be re-used by issuing another call to

CreateFile().

Software Documentation F&S CAN Driver | 33 of 95

8.3 WriteFile()

Signature:
BOOL WriteFile(

 HANDLE hDevice, LPVOID lpBuffer,

 DWORD dwCount, LPDWORD lpdwWritten,

 LPOVERLAPPED lpOverlapped

);

Parameters:

hDevice Handle to already open device file that must have WRITE access

(opened with GENERIC_WRITE)

lpBuffer Pointer to the data to send

dwCount Number of bytes in lpBuffer

lpdwWritten Pointer to a variable where the number of actually used bytes is

stored.

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Software Documentation F&S CAN Driver | 34 of 95

Description:
This function sends a message to the CAN bus. It must get the data as a formatted ASCII
text string and converts it to a binary CAN message before sending it. The transmission is

configured by registry entry TxMode.

In Single Message Mode, WriteFile() blocks until the message is actually transmitted. In

Send Buffer Mode, the message is only stored in the send buffer and WriteFile() returns

immediately. The background CAN service routine then takes it from there and transmits it

on the CAN bus as soon as possible. If the send buffer is full, WriteFile() blocks until

there is room in the send buffer again for the message to be stored.

If configured in TxMode and if the file handle was opened with WRITE and READ access,

the driver will generate an event CANBUS_EVENT_TRANSMITTED on the corresponding vir-

tual receive channel, when the message was finally transmitted.

With SetCommTimeouts() it is possible to determine how long WriteFile() will wait at

most when blocked. After this time, it will return with an error and GetLastError() will

show ERROR_TIMEOUT.

You can use IOCTL_CAN_WRITE_TRANSMIT_DATA instead to transmit a message directly

in binary form.

Message Format:

A message for WriteFile() has the following textual form:
<id> <rtr> <dlc> <msg0> <msg1>... <eol>

All values have to be given as hex numbers (without leading 0x and without the angular

brackets) and must be separated by non-hex characters, usually commas or white-space

like <TAB> or blank characters.

The fields have the following meaning.

<id> CAN identifier; the alignment must be as configured with registry entry Align

<rtr> Remote Transmission Request:

0: CAN message with data
1: Request data from receiver

<dlc> Number of data bytes (0..8)

<msg0>, <msg1>, ...

Up to 8 data bytes. Only the first <dlc> bytes of them are used if there are

more bytes given

<eol> Any combination of \r, \n and \0 (i.e. Carriage Return <CR>, Line Feed

<LF> and End-Of-String zero).

Please note that the driver uses plain ASCII characters here, not Unicode characters.

It is theoretically possible to combine more than one message in one call to WriteFile()

or to split a message text into several calls to WriteFile(). However it is recommended to

prepare exactly one message per call.

Software Documentation F&S CAN Driver | 35 of 95

Example 1:

Send a message with ID 0x731, <rtr>=0, and four data bytes 0x11, 0x22, 0x33 and 0x44.
BYTE str[] = "731 0 4 11 22 33 44\n";

WriteFile(hCAN, str, strlen(str), &dwWritten,

 NULL);

Example 2:
This is a function that sends a generic message with 2 data bytes.
void SendCanMessage(HANDLE hCAN, DWORD dwID,

 BOOL bRTR, BYTE chData1, BYTE chData2)

{

 BYTE str[80];

 DWORD dwWritten
 sprintf(str, "%x %x %x %x %x %x\n", dwID,

 bRTR ? 1 : 0, 2, chData1, chData2);

 WriteFile(hCAN, str, strlen(str),

 &dwWritten, NULL);

}

Software Documentation F&S CAN Driver | 36 of 95

8.4 ReadFile()

Signature:
BOOL ReadFile(

 HANDLE hDevice, LPVOID lpBuffer,

 DWORD dwCount, LPDWORD lpdwRead,

 LPOVERLAPPED lpOverlapped

);

Parameters:

hDevice Handle to already open device file that must have READ access

(opened with GENERIC_READ)

lpBuffer Pointer to a buffer where the received data will be stored

dwCount Size of this buffer (in bytes); it should be large enough to hold a full

event entry in text representation.

lpdwRead Pointer to a variable where the number of actually received bytes is

stored.

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Software Documentation F&S CAN Driver | 37 of 95

Description:
This function gets the next event from the event queue and returns it as a formatted ASCII
text string.

If the event queue is empty, ReadFile() blocks until there is an event available. You can

influence this behaviour by setting a timeout with SetCommTimeouts().

You can use command IOCTL_CAN_READ_EVENT_DATA instead to receive an event direct-

ly in binary format.

Event Format:
An event consists of a string field telling the event type and a time field telling when the
event has occurred. Some events have additional fields appended, for example the message
that was received.
Please note that the driver uses plain ASCII characters, not Unicode characters.

 Event CANBUS_EVENT_RECEIVED:
received\t<time_high>:<time_low>\t<id>\t<rtr>

\t<dlc>\r\n\t<msg0>\t<msg1>...\t<lost>\n

 Event CANBUS_EVENT_TRANSMITTED:
transmitted\t<time_high>:<time_low>\t<id>\t<rtr>

\t<dlc>\r\n\t<msg0>\t<msg1>...\n

 Event CANBUS_EVENT_ABORTED:
aborted\t<time_high>:<time_low>\t<id>\t<rtr>

\t<dlc>\r\n\t<msg0>\t<msg1>...\n

 Event CANBUS_EVENT_ARBITRATION_LOST:
arbitration lost\t<time_high>:<time_low>\n

 Event CANBUS_EVENT_DEVICE_CHANGED:
device changed\t<time_high>:<time_low>\n

 Event CANBUS_EVENT_ENTERING_STANDBY:
entering standby\t<time_high>:<time_low>\n

 Event CANBUS_EVENT_LEAVING_STANDBY:
leaving standby\t<time_high>:<time_low>\n

 Event CANBUS_EVENT_OVERRUN:
overrun\t<time_high>:<time_low>\n

 Event CANBUS_EVENT_WARNING:
warning\t<time_high>:<time_low>\n

 Event CANBUS_EVENT_PASSIVE:
passive\t<time_high>:<time_low>\n

 Event CANBUS_EVENT_BUS_ERROR:
bus error\t<time_high>:<time_low>\n

 Any other event:
unknown event <ev>\t<time_high>:<time_low>\n

Here the fields have the following meaning:

<time_high> High-word of the time when the event occurred (32 bit as deci-

mal value)

<time_low> Low-word of this time (32 bit as decimal value)

<id> CAN identifier of the message (32 bit value as 8 hex digits, aligned as config-

ured by registry entry Align)

<rtr> Remote transmission request (decimal value)

0: Normal CAN message
1: An answer is requested

<dlc> Data length code (0..8 as decimal value)

<msg0>, <msg1>, ...

Up to eight message bytes (each 2 hex digits)

<lost> Number of lost events since previous recorded event (32 bit as decimal value)

Software Documentation F&S CAN Driver | 38 of 95

<ev> Event number of the unknown event

\t Tabulator character <TAB> (=0x09)

\r Carriage return character <CR> (=0x0D)

\n Line feed character <LF> (=0x0A)

Example 1:

The message with ID 0x731, <rtr>=0, and four data bytes 0x11, 0x22, 0x33 and 0x44 was

successfully transmitted at time 12345.
transmitted 0:12345 731 0 4 11 22 33 44

Example 2:

A message with ID 0x112 and <rtr>=1 with no data bytes was received at time 12568.

There were five messages lost before this message.
received 0:12568 112 1 0 5

Example 3:

The controller settings were changed at time 13210.
device changed 0:13210

Please note that the larger blanks shown here in these examples are actually <TAB> charac-

ters \t, and the strings are closed by a linefeed character \n.

Software Documentation F&S CAN Driver | 39 of 95

8.5 SetCommTimeouts()

Signature:
BOOL SetCommTimeouts(

 HANDLE hDevice,

 LPCOMMTIMEOUTS lpTimeouts

);

Parameters:

hDevice Handle to already open device file

lpTimeouts Pointer to a COMMTIMEOUTS structure with the timeout values to set

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
This function sets the timeout values used in all send and receive functions. Each open file
handle can have its own set of timeout values.
A send function will block in Single Message Mode or when the send buffer is full. A receive
function will block, when the event queue is empty. This means that these functions would
not return until some activity on the CAN bus is finished.
By setting a timeout, these functions will return in any case after a specified maximum time,

even if they did not succeed. The timeouts are set in a COMMTIMEOUTS structure with the

following layout.
typedef struct _COMMTIMEOUTS

{

 DWORD ReadIntervalTimeout;

 DWORD ReadTotalTimeoutMultiplier;

 DWORD ReadTotalTimeoutConstant;

 DWORD WriteTotalTimeoutMultiplier;

 DWORD WriteTotalTimeoutConstant;

} COMMTIMEOUTS, *LPCOMMTIMEOUTS;

This structure, usually used with serial lines, defines the maximum times allowed between
two bytes (interval timeouts) and for the whole serial message (total timeouts).
With this CAN driver, messages are received as events. This makes it impossible to define
read timeouts that depend on the message length. An event is either available or not. There-

fore the two entries ReadIntervalTimeout and ReadTotalTimeoutMultiplier are

ignored by the driver and the timeout is set by ReadTotalTimeoutConstant only.

Entry WriteTotalTimeoutMultiplier is combined with the data length code DLC, i.e.

the number of data bytes in the final binary message, not the length of the textual represen-

tation given by dwCount in WriteFile(), as this would not make sense. The final timeout

used is

WriteTotalTimeoutMultiplier * DLC

+ WriteTotalTimeoutConstant.

All timeout values are given in milliseconds. The value INFINITE has the special meaning

of “wait infinitely”. Therefore to avoid timeouts, set ReadTotalTimeoutConstant and/or

WriteTotalTimeoutConstant to INFINITE.

A timeout value of zero means return immediately. This is different to serial lines where it
means “don’t use timeouts”. As this would be the same as “wait infinitely”, zero is much bet-
ter used for completely non-blocking calls.

Software Documentation F&S CAN Driver | 40 of 95

You can use function GetCommTimeouts() to determine the currently active timeout set-

tings.

Example:
Change the read timeout to 300ms, keep all other timeouts.
COMMTIMEOUTS cTimeouts;

HANDLE hCAN;

hCAN = CreateFile(...);

GetCommTimeouts(hCAN, &cTimeouts);

cTimeouts.ReadTotalTimeoutConstant = 300;

SetCommTimeouts(hCAN, &cTimeouts);

Software Documentation F&S CAN Driver | 41 of 95

8.6 GetCommTimeouts()

Signature:
BOOL GetCommTimeouts(

 HANDLE hDevice,

 LPCOMMTIMEOUTS lpTimeouts

);

Parameters:

hDevice Handle to already open device file

lpTimeouts Pointer to a COMMTIMEOUTS structure where the current timeout val-

ues will be stored

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
This function returns the timeout values that are currently active in the driver. For a descrip-

tion of the COMMTIMEOUTS structure and an example see function SetCommTimeouts() on

page 39. Entries ReadIntervalTimeout and ReadTotalTimeoutMultiplier are not

used by the driver and can safely be ignored.

Software Documentation F&S CAN Driver | 42 of 95

8.7 SetCommMask()

Signature:
BOOL SetCommMask(

 HANDLE hDevice,

 DWORD dwEventMask,

);

Parameters:

hDevice Handle to already open device file

dwEventMask Specifies the events to enable (see table below)

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
This function tells the driver which types of events should be recorded in the event queue. All
other events are ignored from then on. See page 25 for a list of possible event types.

If the new mask that is set with SetCommMask() contains fewer or other event types than

before and there were already events waiting in the queue with a type now disabled, these
events are immediately removed from the queue. They are irrevocably gone and therefore
counted as “lost” in the next remaining entry.
Each virtual receive channel, i.e. file handle with READ access, can have its own event

mask. You can use function GetCommMask() to determine the currently active event mask.

Example:
Lets assume someone has misconfigured the CAN driver to use a far too small event queue
with only eight entries. In fact this event queue is so small that it is nearly always full and
events don’t fit in rather often. Therefore those events that are lucky to be recorded have
significant lost counts.
We start our observation with the following content of the event queue.

CANBUS_EVENT_ Lost Meaning

1 RECEIVED 2 Two events were lost before this message was received

2 RECEIVED 5 Five events were lost between #1 and #2

3 DEVICE_CHANGED 4 Device was reconfigured, four other events were lost since
#2

4 DEVICE_CHANGED 3 Again a reconfiguration was recorded after three events
were lost

5 TRANSMITTED 1 A message was successfully transmitted, but one lost event

6 DEVICE_CHANGED 2 Two lost messages since #5

7 RECEIVED 0 This is the event immediately following #6

8 TRANSMITTED 0 And this directly followed #7

Software Documentation F&S CAN Driver | 43 of 95

Now the following commands are executed and remove the event type

CANBUS_EVENT_DEVICE_CHANGED from the active event mask.

DWORD dwEventMask;

GetCommMask(hCAN, &dwEventMask);

dwEventMask &= ~CANBUS_EVENT_DEVICE_CHANGED;

SetCommMask(hCAN, dwEventMask);

This will immediately delete entries #3, #4 and #6 from the queue. Their lost counts (plus the
number of the deleted events themselves) are added to the remaining event entries.

Let’s look at the new content of the queue immediately after SetCommMask(). Note how the

lost counts have changed.

CANBUS_EVENT_ Lost Meaning

1 RECEIVED 2 As before

2 RECEIVED 5 As before

3 TRANSMITTED 10 This is the previous entry #5 that had a lost count of 1. Now
there are two additional events lost (#3 and #4), and these
events had an own lost count of 4 and 3. This sums up to the
new lost count of 1+2+4+3=10.

4 RECEIVED 3 This is previous entry #7 which had a lost count of 0. Now as
previous #6 is deleted, we have to add its lost count of 2 here,
plus the now missing #6 itself. This sums up to 0+1+2=3.

5 TRANSMITTED 0 This is previous entry #8, no change

6 - 0 This entry is now empty

7 - 0 This entry is now empty

8 - 0 This entry is now empty

Remark:
This is a constructed example. Nobody would actually use such an insufficient and unreliable
configuration in real life. Usually the lost counts are all zero.
If an event shows a lost count of non-zero that is not the result of the removal of entries by

SetCommMask() as outlined above, this is an alarming sign that your application has al-

ready reached its maximum capacity of handling CAN bus events.

Software Documentation F&S CAN Driver | 44 of 95

8.8 GetCommMask()

Signature:
BOOL GetCommMask(

 HANDLE hDevice,

 LPDWORD lpdwEventMask,

);

Parameters:

hDevice Handle to already open device file

lpdwEventMask Pointer to a DWORD where the current event mask will be stored

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
Return the event mask that is currently active in the driver.

Use function SetCommMask() to set a new event mask. See page 42 for a detailed descrip-

tion and an example.

Software Documentation F&S CAN Driver | 45 of 95

8.9 WaitCommEvent()

Signature:
BOOL WaitCommEvent(

 HANDLE hDevice,

 LPDWORD lpdwEvent,

 LPOVERLAPPED lpOverlapped

);

Parameters:

hDevice Handle to already open device file

lpdwEvent Pointer to a DWORD where the event type will be stored

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
This function waits until an event is available in the event queue. It keeps the event in the

queue but returns the event type in the DWORD where lpdwEvent points to. If this value is

zero, this indicates that the function was aborted, for example because the device was

closed. Check GetLastError() in this case.

If there are already events waiting in the event queue when WaitCommEvent() is called, it

simply peeks into the type of the first queue entry and returns immediately.

You can use SetCommMask() to define the set of event types to react on and Get-

CommMask() to get the currently active set of event types.

Please note that WaitCommEvent() does not use the timeouts set with Set-

CommTimeouts(). It will wait indefinitely if no event arrives.

Example:
Wait until the CAN controller is woken up from sleep mode by some external bus activity.

DWORD dwEvent;

HANDLE hCAN;

BYTE chCmd = CANBUS_CMD_ENTER_STANDBY;

hCAN = CreateFile(...);

...

/* Set controller into sleep mode */

DeviceIoControl(hCAN, IOCTL_CAN_SET_COMMAND,

 &chCMD, sizeof(chCMD), NULL, 0, NULL, NULL);

/* Wait until controller wakes up again */

SetCommMask(hCAN, CANBUS_EVENT_LEAVING_STANDBY);

WaitCommEvent(hCAN, &dwEvent, NULL);

Software Documentation F&S CAN Driver | 46 of 95

8.10 DeviceIoControl()

Signature:
int DeviceIoControl(

 HANDLE hDevice, DWORD dwIoControlCode,

 LPVOID lpInBuffer, DWORD nInBufferSize,

 LPVOID lpOutBuffer, DWORD nOutBufferSize,

 LPDWORD lpReturned, LPOVERLAPPED lpOverlapped

);

Parameters:

hDevice Handle to already open device file

dwIoControlCode Control code specifying the device specific command to execute

lpInBuffer Pointer to the data going into the function (IN data)

nInBufferSize Size of the IN data (in bytes)

lpOutBuffer Pointer to a buffer where data coming out of the function can be

stored (OUT data)

nOutBufferSize Number of bytes available for the OUT data

lpReturned Number of bytes actually written to the OUT data buffer

lpOverlapped Unused, set to NULL

Description:

Executes a device specific function. The type of function is given by a control code in dwIo-

ControlCode. Each function has a specific set of parameters. Usually there is some data

going into the function (IN data) and some data is returned out of the function (OUT data).

The following table lists all control codes recognised by the CAN driver. These codes as well

as all required data structures are defined in the header file canbusio.h (see page 74) and

will be explained in detail in the following subsections.

Control Code Function

IOCTL_CAN_WRITE

_ACCEPTANCE_FILTER

Set new acceptance filter for the virtual re-
ceive channel

IOCTL_CAN_READ

_ACCEPTANCE_FILTER

Get the current acceptance filter of the re-
ceive channel

IOCTL_CAN_SET_BAUDRATE Set a new CAN bus baud rate

IOCTL_CAN_GET_BAUDRATE Get the current baud rate

IOCTL_CAN_SET_BAUDRATE

_BY_CONSTANT

Select a predefined baud rate from the baud
rate table

IOCTL_CAN_GET_BAUDRATE

_BY_CONSTANT

Get the index into the baud rate table for the
current rate

IOCTL_CAN_SET_CAN_MODE Set a new CAN bus mode

IOCTL_CAN_SET_DEFAULT

_FRAME_FORMAT

Set a new CAN bus frame format

IOCTL_CAN_WRITE_TRANSMIT_DATA Transmit a message in binary form

Software Documentation F&S CAN Driver | 47 of 95

IOCTL_CAN_READ_EVENT_DATA Read the next event in binary form

IOCTL_CAN_READ_TIME Get the current CAN time

IOCTL_CAN_READ_PROPERTIES Read the capabilities of the CAN controller
and driver

IOCTL_CAN_SET_COMMAND Execute a special CAN controller command

IOCTL_CAN_READ_REGISTER Read a register of the CAN controller

IOCTL_CAN_WRITE_REGISTER Write a value to a register of the CAN con-
troller

IOCTL_CAN_READ_REGISTER_RM Read a configuration register of the CAN
controller

IOCTL_CAN_WRITE_REGISTER_RM Write a configuration register of the CAN
controller

IOCTL_CAN_INIT Initialise the CAN controller

IOCTL_CAN_TEST_DEVICE Check if the CAN controller is in Configura-
tion Mode

Table 11: Function DeviceIiControl – Control Codes

Software Documentation F&S CAN Driver | 48 of 95

8.11 IOCTL_CAN_WRITE_ACCEPTANCE_FILTER

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_WRITE

 _ACCEPTANCE_FILTER

lpInBuffer Pointer to structure CAN_ACCEPTANCE_FILTER with the new ac-

ceptance filter information

nInBufferSize sizeof(CAN_ACCEPTANCE

 _FILTER)

lpOutBuffer Unused, set to NULL

nOutBufferSize Unused, set to 0

lpReturned Unused, set to NULL

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
Set a new acceptance filter for the virtual receive channel. The acceptance filter determines
which incoming messages are accepted and which are ignored, depending on the incoming
message ID. Every virtual receive channel (i.e. open file handle with READ access) can
have its own acceptance filter.
See page 7 for a detailed description of acceptance filters.

CAN_ACCEPTANCE_FILTER is a structure defined in header file canbusio.h with the fol-

lowing form:

typedef struct tagCAN_ACCEPTANCE_FILTER

{

 CAN_DWORD code;

 CAN_DWORD mask;

} CAN_ACCEPTANCE_FILTER, *PCAN_ACCEPTANCE_FILTER;

The code defines the value that every incoming message ID is compared to and the mask

decides which bits of the incoming ID must match the code exactly and which bits are al-
ways accepted.

The format of the filter data is configured with registry settings Align and MaskActive. If

no acceptance filter is set after opening the device, the default filter as given by registry en-

tries AcceptanceCode and AcceptanceMask is used.

Software Documentation F&S CAN Driver | 49 of 95

Example 1:

Set an acceptance filter for standard frames to accept IDs 0x120 to 0x127. We assume
Align=1 and MaskActive=0 here.

HANDLE hCAN;

CAN_ACCEPTANCE_FILTER cFilter;

hCAN = CreateFile(..., GENERIC_READ, ...);

cFilter.code = 0x120;

cFilter.mask = 0x007;

DeviceIoControl(hCAN,

 IOCTL_CAN_WRITE_ACCEPTANCE_FILTER,

 &cFilter, sizeof(CAN_ACCEPTANCE_FILTER),

 NULL, 0, NULL, NULL);

To get the same setting with Align=0, you would have to use these values:
cFilter.code = 0x24000000;

cFilter.mask = 0x00E00000;

And with Align=0 and MaskActive=1 these:
cFilter.code = 0x24000000;

cFilter.mask = 0xFF1FFFF8;

Example 2:

Set an acceptance filter for extended frames to accept IDs 0x00234500 to 0x002345FF,

0x01234500 to 0x012345FF, 0x0234500 to 0x02345FF and 0x0334500 to 0x03345FF.

We assume MaskActive=0 now and Align=2, which is the best format for 29-bit IDs.

HANDLE hCAN;

CAN_ACCEPTANCE_FILTER cFilter;

hCAN = CreateFile(..., GENERIC_READ, ...);

cFilter.code = 0x00234500;

cFilter.mask = 0x030000FF;

DeviceIoControl(hCAN,

 IOCTL_CAN_WRITE_ACCEPTANCE_FILTER,

 &cFilter, sizeof(CAN_ACCEPTANCE_FILTER),

 NULL, 0, NULL, NULL);

Software Documentation F&S CAN Driver | 50 of 95

8.12 IOCTL_CAN_READ_ACCEPTANCE_FILTER

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_READ

 _ACCEPTANCE_FILTER

lpInBuffer Unused, set to NULL

nInBufferSize Unused, set to 0

lpOutBuffer Pointer to structure CAN_ACCEPTANCE_FILTER where the current

acceptance filter information will be stored

nOutBufferSize sizeof(CAN_ACCEPTANCE

 _FILTER)

lpReturned If not NULL, the referenced DWORD will be set to the number of actual-

ly returned bytes in lpOutBuffer

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
Read the currently active acceptance filter settings for the virtual receive channel. See

page 48 for a description of structure CAN_ACCEPTANCE_MASK.

Example:

HANDLE hCAN;

CAN_ACCEPTANCE_FILTER cFilter;

DWORD dwCount;

hCAN = CreateFile(..., GENERIC_READ, ...);

DeviceIoControl(hCAN,

 IOCTL_CAN_READ_ACCEPTANCE_FILTER, NULL, 0,

 &cFilter, sizeof(CAN_ACCEPTANCE_FILTER),

 &dwCount, NULL);

/* cFilter contains acceptance filter now */

Software Documentation F&S CAN Driver | 51 of 95

8.13 IOCTL_CAN_SET_BAUDRATE

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_SET_BAUDRATE

lpInBuffer Pointer to DWORD with the new rate

nInBufferSize sizeof(DWORD)

lpOutBuffer Unused, set to NULL

nOutBufferSize Unused, set to 0

lpReturned Unused, set to NULL

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
Set a new baud rate on the CAN bus. The allowed range can be determined with

IOCTL_CAN_READ_PROPERTIES.

This is a global setting and will influence all virtual channels that are currently open. There-

fore all virtual receive channels will get event CANBUS_EVENT_DEVICE_CHANGED.

Software Documentation F&S CAN Driver | 52 of 95

8.14 IOCTL_CAN_GET_BAUDRATE

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_GET_BAUDRATE

lpInBuffer Unused, set to NULL

nInBufferSize Unused, set to 0

lpOutBuffer Pointer to DWORD where the current baud rate will be stored

nOutBufferSize sizeof(DWORD)

lpReturned If not NULL, the referenced DWORD will be set to the number of actual-

ly returned bytes in lpOutBuffer

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
Get the baud rate that is currently active.

Software Documentation F&S CAN Driver | 53 of 95

8.15 IOCTL_CAN_SET_BAUDRATE_BY_CONSTANT

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_SET_BAUDRATE

 _BY_CONSTANT

lpInBuffer Pointer to DWORD with the baud rate table index of the new rate

nInBufferSize sizeof(DWORD)

lpOutBuffer Unused, set to NULL

nOutBufferSize Unused, set to 0

lpReturned Unused, set to NULL

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
Set a new baud rate from the table of predefined baud rates. The table of predefined baud

rates can be determined with IOCTL_CAN_READ_PROPERTIES.

This is a global setting and will influence all virtual channels that are currently open. There-

fore all virtual receive channels will get event CANBUS_EVENT_DEVICE_CHANGED.

Software Documentation F&S CAN Driver | 54 of 95

8.16 IOCTL_CAN_GET_BAUDRATE_BY_CONSTANT

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_GET_BAUDRATE

 _BY_CONSTANT

lpInBuffer Unused, set to NULL

nInBufferSize Unused, set to 0

lpOutBuffer Pointer to DWORD where the current baud rate table index will be

stored

nOutBufferSize sizeof(DWORD)

lpReturned If not NULL, the referenced DWORD will be set to the number of actual-

ly returned bytes in lpOutBuffer

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
Get the index of the currently active baud rate with respect to the table of predefined baud
rates. If there is no exact match in the table, e.g. when set with

IOCTL_CAN_SET_BAUDRATE and not IOCTL_CAN_SET_BAUDRATE_BY_CONSTANT, value

–1 (=0xFFFFFFFF) is returned.

Software Documentation F&S CAN Driver | 55 of 95

8.17 IOCTL_CAN_SET_CAN_MODE

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_SET_CAN_MODE

lpInBuffer Pointer to DWORD with the new CAN bus operation mode (see below)

nInBufferSize sizeof(DWORD)

lpOutBuffer Unused, set to NULL

nOutBufferSize Unused, set to 0

lpReturned Unused, set to NULL

lpOverlapped Unused, set to NULL

CAN Bus Mode in lpInBuffer:

CANBUS_FORMAT_CAN_2_0_A Use CAN2.0A mode

CANBUS_FORMAT_CAN_2_0_B Use CAN2.0B mode

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:

Set new CAN bus mode. See also registry entry CanMode2B.

This is a global setting and will influence all virtual channels that are currently open. There-

fore all virtual receive channels will get event CANBUS_EVENT_DEVICE_CHANGED.

Software Documentation F&S CAN Driver | 56 of 95

8.18 IOCTL_CAN_SET_DEFAULT_FRAME_FORMAT

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_SET_DEFAULT

 _FRAME_FORMAT

lpInBuffer Pointer to DWORD with the format

nInBufferSize sizeof(DWORD)

lpOutBuffer Unused, set to NULL

nOutBufferSize Unused, set to 0

lpReturned Unused, set to NULL

lpOverlapped Unused, set to NULL

New Frame Format in lpInBuffer:
CANBUS_TRANS_FMT_DEFAULT

Use frame format as given by the current CAN bus operation mode:
CAN2.0A: Standard Frames
CAN2.0B: Extended Frames

CANBUS_TRANS_FMT_STD

Use Standard Frames

CANBUS_TRANS_FMT_EXT

Use Extended Frames

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
Set a new CAN bus frame format. This format is used for all send and receive functions. If a
new frame format is set, all acceptance filters must be reconfigured, too.
This is a global setting and will influence all virtual channels that are currently open. There-

fore all virtual receive channels will get event CANBUS_EVENT_DEVICE_CHANGED.

Software Documentation F&S CAN Driver | 57 of 95

8.19 IOCTL_CAN_WRITE_TRANSMIT_DATA

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_WRITE

 _TRANSMIT_DATA

lpInBuffer Pointer to structure CAN_TRANSMIT_DATA with the message to send

nInBufferSize sizeof(CAN_TRANSMIT_DATA)

lpOutBuffer Unused, set to NULL

nOutBufferSize Unused, set to 0

lpReturned Unused, set to NULL

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
This function sends a message given in binary form to the CAN bus. The transmission is

configured by registry entry TxMode.

In Single Message Mode, the function blocks until the message is actually transmitted. In
Send Buffer Mode, the message is only stored in the send buffer and the function immedi-
ately returns. The background CAN service routine then takes it from there and transmits it
on the CAN bus as soon as possible. If the send buffer is full, this function blocks until there
is room in the send buffer again for the message to be stored.

If configured in TxMode and if the file handle was opened with WRITE and READ access,

the driver will generate an event CANBUS_EVENT_TRANSMITTED on the corresponding vir-

tual receive channel, when the message was finally transmitted.

With SetCommTimeouts() it is possible to determine how long

IOCTL_CAN_WRITE_TRANSMIT_DATA will wait at most when blocked. After this time, it will

return with an error and GetLastError() will show ERROR_TIMEOUT.

CAN_TRANSMIT_DATA is a structure defined in canbusio.h with the following form:
typedef struct tagCAN_TRANSMIT_DATA

{

 CAN_UINT fmt;

 CAN_DWORD identifier;

 CAN_BYTE rtr;

 CAN_BYTE dlc;

 CAN_BYTE msg[8];

} CAN_TRANSMIT_DATA, *PCAN_TRANSMIT_DATA;

Software Documentation F&S CAN Driver | 58 of 95

The fields have the following meaning.

fmt The frame format to use (see below)

identifier CAN identifier; the alignment must be as configured with registry entry Align

rtr Remote Transmission Request:

0: CAN message with data
1: Request data from receiver

dlc Number of data bytes (0..8)

msg[] Up to 8 data bytes. Only the first dlc bytes of them are used if there are more

bytes given

Field fmt can have one of the following values.

fmt Meaning

CANBUS_TRANS_FMT_DEFAULT Use the default frame format like any oth-
er read or write function.

CANBUS_TRANS_FMT_STD Use a Standard Frame (*)

CANBUS_TRANS_FMT_EXT Use an Extended Frame (*)

The values marked with (*) overrule the default format as set by

IOCTL_CAN_SET_DEFAULT_FRAME_FORMAT or registry entry Format. This allows a more

flexible way of sending frames of different size in CAN2.0B networks.

Software Documentation F&S CAN Driver | 59 of 95

Example:

Send a Standard Frame with ID 0x123 and two data bytes 0x11 and 0x22. After that, send

an Extended Frame requesting data from ID 0x12345678. We assume Align=0 and

CAN2.0B mode here.

HANDLE hCAN;

CAN_TRANSMIT_DATA cData;

hCAN = CreateFile(..., GENERIC_WRITE, ...);

...

cData.fmt = CANBUS_TRANS_FMT_STD;

cData.identifier = 0x123;

cData.rtr = 0;

cData.dlc = 2;

cData.msg[0] = 0x11;

cData.msg[1] = 0x22;

DeviceIoControl(hCAN,

 IOCTL_CAN_WRITE_TRANSMIT_DATA,

 &cData, sizeof(CAN_TRANSMIT_DATA),

 NULL, 0, NULL, NULL);

cData.fmt = CANBUS_TRANS_FMT_EXT;

cData.identifier = 0x12345678;

cData.rtr = 1;

cData.dlc = 0;

DeviceIoControl(hCAN,

 IOCTL_CAN_WRITE_TRANSMIT_DATA,

 &cData, sizeof(CAN_TRANSMIT_DATA),

 NULL, 0, NULL, NULL);

Software Documentation F&S CAN Driver | 60 of 95

8.20 IOCTL_CAN_READ_EVENT_DATA

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_READ_EVENT_DATA

lpInBuffer Unused, set to NULL

nInBufferSize Unused, set to 0

lpOutBuffer Pointer to structure CAN_EVENT where the event data will be stored

nOutBufferSize sizeof(CAN_EVENT)

lpReturned If not NULL, the referenced DWORD will be set to the number of actual-

ly returned bytes in lpOutBuffer

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
This function gets the next event from the event queue and returns it in binary representation

in a CAN_EVENT structure.

If the event queue is empty, the function blocks until there is an event available. With Set-

CommTimeouts() it is possible to determine how long IOCTL_CAN_READ_EVENT_DATA

will wait at most when blocked. After this time, it will return with an error and GetLastEr-

ror() will show ERROR_TIMEOUT.

CAN_EVENT is a structure defined in canbusio.h with the following form:

typedef struct tagCAN_EVENT

{

 CAN_DWORD event;

 CAN_TIME time;

 CAN_DWORD lost;

 CAN_TRANSMIT_DATA data;

 CAN_UINT arbitration;

} CAN_EVENT, *PCAN_EVENT;

The fields have the following meaning.

event The type of the event (see page 25)

time The CAN bus time when the event occurred; see page 62 for a description of
CAN_TIME

lost The number of lost events since the last recorded event, i.e. events that could

not be recorded because the event queue was full

data The message data. See page 57 for a description of structure

CAN_TRANSMIT_DATA.

This field is only valid if event is one of CANBUS_EVENT_RECEIVED,

CANBUS_EVENT_TRANSMITTED or CANBUS_EVENT_ABORTED.

arbitration Unused, ignore

You can use ReadFile() instead to receive an event in text format.

Software Documentation F&S CAN Driver | 61 of 95

Example:
Read the next event and handle it. If a new message was received, look at the ID to decide
further actions.

HANDLE hCAN;

CAN_EVENT cEvent;

hCAN = CreateFile(..., GENERIC_READ, ...);

...

DeviceIoControl(hCAN, IOCTL_CAN_READ_EVENT_DATA, NULL, 0,

 &cEvent, sizeof(CAN_EVENT), NULL, NULL);

switch (cEvent.event)

{

 case CANBUS_EVENT_TRANSMITTED:

 ...

 break;

 case CANBUS_EVENT_ABORTED:

 ...

 break;

 case CANBUS_EVENT_RECEIVED:

 switch (cEvent.data.identifier)

 {

 ...

 }

 break;

 default:

 /* Ignore */

 break;

}

Software Documentation F&S CAN Driver | 62 of 95

8.21 IOCTL_CAN_READ_TIME

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_READ_TIME

lpInBuffer Unused, set to NULL

nInBufferSize Unused, set to 0

lpOutBuffer Pointer to a CAN_TIME structure where the current time will be

stored

nOutBufferSize sizeof(CAN_TIME)

lpReturned If not NULL, the referenced DWORD will be set to the number of actual-

ly returned bytes in lpOutBuffer

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
Get the current CAN bus time. The CAN bus time is a 64 bit value used to tell when an event

occurred. As the time continuously goes on, every call to IOCTL_CAN_READ_TIME will re-

turn a different value.

The CAN_TIME structure is defined in canbusio.h and has the following form:

typedef struct tagCAN_TIME

{

 CAN_DWORD low;

 CAN_DWORD high;

} CAN_TIME, *PCAN_TIME;

The fields have the following meaning.

low The lower 32 bits of the 64 bit time value

high The higher 32 bits of the 64 bit timer value

Remark:
The current CAN driver implementation uses the Windows Tick Counter as CAN bus time.
This is a 32 bit counter that starts when the power to the device is switched on and incre-

ments every millisecond. It is used as low field. The high field is always zero.

Please note that in this constellation the Windows Tick Counter and therefore the CAN bus
time will wrap around to zero after 232 ms = ~49.7 days of non-stop operation. It will not in-

crement the high field of the CAN bus time then!

Software Documentation F&S CAN Driver | 63 of 95

8.22 IOCTL_CAN_READ_PROPERTIES

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_READ_PROPERTIES

lpInBuffer Unused, set to NULL

nInBufferSize Unused, set to 0

lpOutBuffer Pointer to a CAN_PROPERTIES structure where the CAN controller

properties will be stored

nOutBufferSize sizeof(CAN_PROPERTIES)

lpReturned If not NULL, the referenced DWORD will be set to the number of actual-

ly returned bytes in lpOutBuffer

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
This CAN driver may be used on different boards with different hardware CAN controllers.
By calling this function, the properties of the driver in connection with this specific CAN con-
troller can be determined, e.g. name and version, range of baud rates, available commands,
etc. Please note that this data is mode-specific. For example in CAN2.0B mode the control-
ler may support more commands than in CAN2.0A mode.

The information is returned in a CAN_PROPERTIES structure which is defined in canbu-

sio.h and has the following form:

typedef struct tagCAN_PROPERTIES

{

 CAN_DWORD version;

 TCHAR device_name[100];

 CAN_DWORD min;

 CAN_DWORD max;

 CAN_INT nCommands;

 CAN_INT commands[10];

 CAN_INT nBaudrates;

 CAN_DWORD baudrates[50];

 CAN_DWORD chipset_flags;

 CAN_INT nRegisters;

}

Software Documentation F&S CAN Driver | 64 of 95

Here the fields have the following meaning.

version Version of the driver. The version is divided in a major and a minor number

with each one byte. For example in V2.1, 2 is the major and 1 is the minor
version.
version = (major << 8) | minor

device_name Name and version of the driver and the CAN controller

min Minimum baud rate that is possible

max Maximum baud rate that is possible

nCommands Number of valid entries in commands[]

commands[] Table of available controller commands for IOCTL_CAN_SET_COMMAND. Each

entry of this array holds one available command. See page 65 for a list of

possible commands. Only nCommands entries are valid, ignore all remaining

entries.

nBaudrates Number of valid entries in baudrates[]

baudrates[] Table of predefined baud rates. Each entry holds one possible

baud rate that is guaranteed to work properly. Only nBaudrates entries are

valid, ignore the remaining entries.

chipset_flags

A combination of flags showing the CAN bus capabilities (see below)

nRegisters Number of registers that can be accessed with commands

IOCTL_CAN_READ_REGISTER and IOCTL_CAN_WRITE_REGISTER. The

registers are numbered 0 to nRegisters-1.

The chipset_flags entry may contain a combination of the following bit values.

chipset_flags Meaning

CANBUS_CFS_CAN_2_0_A Controller supports CAN2.0A

CANBUS_CFS_CAN_2_0_B Controller supports CAN2.0B

CANBUS_CFS_EXT_FRAME Controller supports extended frames

CANBUS_CFS_POLLING Controller supports polling (default: interrupts)

Software Documentation F&S CAN Driver | 65 of 95

8.23 IOCTL_CAN_SET_COMMAND

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_SET_COMMAND

lpInBuffer Pointer to DWORD with the CAN command to execute (see below)

nInBufferSize sizeof(DWORD)

lpOutBuffer Unused, set to NULL

nOutBufferSize Unused, set to 0

lpReturned Unused, set to NULL

lpOverlapped Unused, set to NULL

CAN Command in lpInBuffer:

Command Description

CANBUS_CMD_ENTER_STANDBY Switch CAN controller to a power-saving sleep
mode

CANBUS_CMD_LEAVE_STANDBY Manually leave sleep mode.

CANBUS_CMD_LISTEN_ON Switch CAN controller to listen-only mode

CANBUS_CMD_LISTEN_OFF Leave listen-only mode

CANBUS_CMD_VIRTUALIZE_ON Use virtual CAN bus between different file handles

CANBUS_CMD_VIRTUALIZE_OFF Don’t use virtual CAN bus between file handles

CANBUS_CMD_CLEAR_OVERRUN Clear overrun flag of the CAN controller after event
CANBUS_EVENT_OVERRUN

CANBUS_CMD_ABORT

_TRANSMISSION

Abort any currently active message transmissions
on this virtual send channel and purge the send
buffer

CANBUS_CMD_SELF

_RECEPTION_REQUEST

Switch CAN controller to a hardware loop-back test
mode where it can only receive its own messages.

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
Issue a special low-level command. Whether a specific command is supported on a specific

driver/controller combination can be determined by IOCTL_CAN_READ_PROPERTIES.

Software Documentation F&S CAN Driver | 66 of 95

Standby

When entering standby mode, the CAN controller is set to a power-saving sleep mode. This
is a global setting impacting all open file handles. Therefore all virtual receive channels will

receive a CANBUS_EVENT_ENTERING_STANDBY event.

The sleep mode is either switched off manually by command

CANBUS_CMD_LEAVE_STANDBY, or automatically by any activity on the bus (sending or re-

ceiving). Therefore calling any send function will automatically wake up the CAN controller.
When the CAN controller leaves standby mode for any reason, all active virtual receive

channels are informed by event CANBUS_EVENT_LEAVING_STANDBY.

Listen

When activating listen-only mode, the transmitter of the CAN controller is switched off. This
is useful to avoid sending anything by accident. If an application tries to send something
while in listen-only mode, the messages will accumulate in the send buffer and not be
transmitted until back in normal mode.
As the receiver of the CAN controller is still active in listen-only mode, the reception of mes-
sages can continue normally.
Switching listen-only mode on or off is a global setting. Therefore all active virtual receive

channels will get an event CANBUS_EVENT_DEVICE_CHANGED.

Virtualize

It is possible to open several file handles to the CAN driver at the same time. If this is done
from different applications that implement completely separate devices, these applications
might assume that they can communicate with each other over the CAN bus. However for
technical reasons, a CAN controller can not receive the messages it has sent itself. As a
consequence these applications can not see any message sent by one of them.
This is where Virtualize will help. It activates a virtual CAN bus between these applications,
not handled by the controller hardware, but by the driver itself. When one application sends
a message and another application has a matching acceptance filter, the message is trans-
ported directly to the event queue of the receiving application, as if it actually had been re-
ceived via the CAN bus.

Virtualize Meaning

OFF No virtual CAN bus. A message that is sent can only be received by other
devices. No other open file handle on this board will receive this message,
even if the acceptance filter matches.

ON Use virtual CAN bus. Every other open file handle on this board with
matching acceptance filter will receive a sent message as if it had actually
been transmitted over the CAN bus.

This setting can be configured by registry entry Virtualize.

Software Documentation F&S CAN Driver | 67 of 95

Example:

HANDLE hCAN;

CAN_EVENT cEvent;

CAN_DWORD dwCmd = CANBUS_CMD_CLEAR_OVERRUN;

hCAN = CreateFile(..., GENERIC_READ, ...);

DeviceIoControl(hCAN, IOCTL_CAN_READ_EVENT_DATA,

 NULL, 0, &cEvent, sizeof(CAN_EVENT), NULL, NULL);

if (cEvent.event == CANBUS_EVENT_OVERRUN)

{

 DeviceIoControl(hCAN, IOCTL_CAN_SET_COMMAND,

 &dwCmd, sizeof(dwCmd), NULL, 0, NULL, NULL);

}

Software Documentation F&S CAN Driver | 68 of 95

8.24 IOCTL_CAN_READ_REGISTER

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_READ_REGISTER

lpInBuffer Pointer to a BYTE with the register number (address) to read

nInBufferSize sizeof(BYTE)

lpOutBuffer Pointer to a BYTE that receives the register value

nOutBufferSize sizeof(BYTE)

lpReturned If not NULL, the referenced DWORD will be set to the number of actual-

ly returned bytes in lpOutBuffer

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
Read the value of the given CAN controller register.
Attention! Reading a register directly from the CAN controller bypasses the CAN driver and
may cause unexpected and unpredictable side effects, even failure.

Software Documentation F&S CAN Driver | 69 of 95

8.25 IOCTL_CAN_WRITE_REGISTER

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_WRITE_REGISTER

lpInBuffer Pointer to a BYTE with the register number (address) to write

nInBufferSize sizeof(BYTE)

lpOutBuffer Pointer to a BYTE that holds the new value to set

nOutBufferSize sizeof(BYTE)

lpReturned Unused, set to NULL

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
Write a new value to the given CAN controller register.

This call uses both data pointers of DeviceIoControl() as IN pointers, lpInBuffer

and lpOutBuffer. This is a little bit unusual, but works nonetheless.

Attention! Writing a value directly to the CAN controller register bypasses the CAN driver and
may cause unexpected and unpredictable side effects, even failure.

Software Documentation F&S CAN Driver | 70 of 95

8.26 IOCTL_CAN_READ_REGISTER_RM

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_READ_REGISTER_RM

lpInBuffer Pointer to a BYTE with the register number (address) to read

nInBufferSize sizeof(BYTE)

lpOutBuffer Pointer to a BYTE that receives the register value

nOutBufferSize sizeof(BYTE)

lpReturned If not NULL, the referenced DWORD will be set to the number of actual-

ly returned bytes in lpOutBuffer

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
Read the value of the given CAN controller register in Configuration Mode (sometimes called
Reset Mode). This command can be used to read configuration data not accessible by the

normal IOCTL_CAN_READ_REGISTER command.

Attention! Reading a register directly from the CAN controller bypasses the CAN driver and
may cause unexpected and unpredictable side effects, even failure.

Software Documentation F&S CAN Driver | 71 of 95

8.27 IOCTL_CAN_WRITE_REGISTER_RM

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_WRITE_REGISTER_RM

lpInBuffer Pointer to a BYTE with the register number (address) to write

nInBufferSize sizeof(BYTE)

lpOutBuffer Pointer to a BYTE that holds the new value to set

nOutBufferSize sizeof(BYTE)

lpReturned Unused, set to NULL

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() for details

!=0 Success

Description:
Write a new value to the given CAN controller register in Configuration Mode (sometimes
called Reset Mode). This command can be used to modify configuration data not accessible

by the normal IOCTL_CAN_WRITE_REGISTER command..

This call uses both data pointers of DeviceIoControl() as IN pointers, lpInBuffer

and lpOutBuffer. This is a little bit unusual, but works nonetheless.

Attention! Writing a value directly to the CAN controller register bypasses the CAN driver and
may cause unexpected and unpredictable side effects, even failure.

Software Documentation F&S CAN Driver | 72 of 95

8.28 IOCTL_CAN_INIT

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_INIT

lpInBuffer Unused, set to NULL

nInBufferSize Unused, set to 0

lpOutBuffer Pointer to a DWORD where the error status of the initialisation will be

stored; this is the same value as can be retrieved with GetLastEr-
ror()

nOutBufferSize sizeof(DWORD)

lpReturned If not NULL, the referenced DWORD will be set to the number of actual-

ly returned bytes in lpOutBuffer

lpOverlapped Unused, set to NULL

Return:

0 Error, see GetLastError() or value in lpOutBuffer for details

!=0 Success

Description:
Reinitialises the controller with the current settings. This might be useful when the controller
experienced lots of errors and went offline.

Software Documentation F&S CAN Driver | 73 of 95

8.29 IOCTL_CAN_TEST_DEVICE

Parameters:

hDevice Handle to already open device file

dwIoControlCode IOCTL_CAN_TEST_DEVICE

lpInBuffer Unused, set to NULL

nInBufferSize Unused, set to 0

lpOutBuffer Unused, set to NULL

nOutBufferSize Unused, set to 0

lpReturned Unused, set to NULL

lpOverlapped Unused, set to NULL

Return:
0 Controller is in Normal Mode

1 Controller is in Configuration Mode

Description:
Test if the CAN controller is currently in Configuration Mode or not. Configuration Mode is
sometimes also called Reset Mode. This may have some relevance when directly reading
from or writing to CAN controller registers.
Attention! The CAN driver may internally switch to and from Configuration Mode at any time.
Therefore this information here is highly unreliable. The function only exists for backward
compatibility. Simply don’t use it in new applications.

Software Documentation F&S CAN Driver | 74 of 95

9 Appendix A

9.1 canbusio.h

The file canbusio.h must be included in all source files that want to use the CAN bus driv-

er interface. It defines all structures, data types and IOCTL commands used by the driver.
The following listing is a slightly modified version of the file to fit better into the line length of
this document.

/***/

/*** ***/

/*** ***/

/*** C A N D r i v e r ***/

/*** ***/

/*** f o r ***/

/*** ***/

/*** N e t D C U / P i c o M O D / P i c o C O M ***/

/*** ***/

/*** ***/

/***/

/*** File: canbusio.h ***/

/*** Author: H. Froelich, H. Keller ***/

/*** Created: 03.04.2008 ***/

/*** Modified: 04.06.2008 18:38:03 (HK) ***/

/*** ***/

/*** Description: ***/

/*** Interface to the CANINTF driver for NetDCU, ***/

/*** PicoMOD, PicoCOM. ***/

/***/

/*** THIS CODE AND INFORMATION IS PROVIDED "AS IS" ***/

/*** WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR ***/

/*** IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED ***/

/*** WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR ***/

/*** A PARTICULAR PURPOSE. ***/

/*** Copyright (c) 2008 F&S Elektronik Systeme GmbH. ***/

/*** All rights reserved. ***/

/***/

#ifndef __CANBUSIO_H__

#define __CANBUSIO_H__

/* Some data types */

#define CAN_DWORD unsigned long

#define CAN_BYTE unsigned char

#define CAN_UINT unsigned int

#define CAN_INT int

/* Maximun size of the device name */

#define MAX_DEVICE_NAME_LENGTH 100

/* Possible CAN modes */

#define CANBUS_FORMAT_CAN_2_0_A 0

#define CANBUS_FORMAT_CAN_2_0_B 1

/* Possible chipset Flags */

#define CANBUS_CFS_CAN_2_0_A (1<<0) /* Supports CAN 2.0 A */

#define CANBUS_CFS_CAN_2_0_B (1<<1) /* Supports CAN 2.0 B */

#define CANBUS_CFS_EXT_FRAME (1<<2) /* Supports Ext. Frames

 (only in CAN 2.0B) */

#define CANBUS_CFS_POLLING (1<<3) /* Supports polling mode

 (default interrupt) */

/* Frame format for transmissions */

#define CANBUS_TRANS_FMT_DEFAULT 0 /* Use default format */

#define CANBUS_TRANS_FMT_STD 1 /* Use Standard Frame

 (11-bit identifier) */

#define CANBUS_TRANS_FMT_EXT 2 /* Use Extended Frame

 (29-bit identifier) */

/* Possible event types */

enum t_canbus_events

{

 CANBUS_EVENT_RECEIVED = 0x001,

 CANBUS_EVENT_TRANSMITTED = 0x002,

 CANBUS_EVENT_BUS_ERROR = 0x004,

 CANBUS_EVENT_WARNING = 0x008,

 CANBUS_EVENT_LEAVING_STANDBY = 0x010,

 CANBUS_EVENT_ARBITRATION_LOST = 0x020,

Software Documentation F&S CAN Driver | 75 of 95

 CANBUS_EVENT_OVERRUN = 0x040,

 CANBUS_EVENT_PASSIVE = 0x080,

 CANBUS_EVENT_ENTERING_STANDBY = 0x100,

 CANBUS_EVENT_DEVICE_CHANGED = 0x200,

 CANBUS_EVENT_ABORTED = 0x400, /* Since V2.x */

};

/* Possible commands */

enum t_canbus_commands

{

 CANBUS_CMD_ENTER_STANDBY = 1,

 CANBUS_CMD_ABORT_TRANSMISSION,

 CANBUS_CMD_CLEAR_OVERRUN,

 CANBUS_CMD_LEAVE_STANDBY,

 CANBUS_CMD_SELF_RECEPTION_REQUEST,

 CANBUS_CMD_LISTEN_ON,

 CANBUS_CMD_LISTEN_OFF,

 CANBUS_CMD_VIRTUALIZE_ON,

 CANBUS_CMD_VIRTUALIZE_OFF,

 /* The following must be the last list entry */

 CANBUS_CMD_LAST_ENTRY

};

/* Maximum number of entries in baud rate table */

#define CANBUS_NUMBER_OF_CONSTANT_BAUDRATES 50

/* CAN time type */

typedef struct tagCAN_TIME

{

 CAN_DWORD low;

 CAN_DWORD high;

} CAN_TIME, *PCAN_TIME;

/* Acceptance filter type */

typedef struct tagCAN_ACCEPTANCE_FILTER

{

 CAN_DWORD code;

 CAN_DWORD mask;

} CAN_ACCEPTANCE_FILTER, *PCAN_ACCEPTANCE_FILTER;

/* Properties of the selected channel */

typedef struct tagCAN_PROPERTIES

{

 CAN_DWORD version; /* Driver version */

 TCHAR device_name[MAX_DEVICE_NAME_LENGTH];

 /* Name of the device */

 CAN_DWORD min; /* Minimum baud rate */

 CAN_DWORD max; /* Maximum baud rate */

 CAN_INT nCommands; /* Number of entries

 in commands[] */

 CAN_INT commands[CANBUS_CMD_LAST_ENTRY];

 /* Supported commands */

 CAN_INT nBaudrates; /* Number of entries

 in baudrates[] */

 CAN_DWORD baudrates[CANBUS_NUMBER_OF_CONSTANT_BAUDRATES];

 /* Preset baud rates */

 CAN_DWORD chipset_flags; /* Available modes and

 frame formats */

 CAN_INT nRegisters; /* Number of available

 hardware registers */

} CAN_PROPERTIES, *PCAN_PROPERTIES;

/* Transmission data type; also used in event data */

typedef struct tagCAN_TRANSMIT_DATA

{

 CAN_UINT fmt; /* Frame format */

 CAN_DWORD identifier; /* CAN ID (11/29 bits) */

 CAN_BYTE rtr; /* Remote Transmission

 Request */

 CAN_BYTE dlc; /* Data Length Code */

 CAN_BYTE msg[8]; /* Data bytes */

} CAN_TRANSMIT_DATA, *PCAN_TRANSMIT_DATA;

/* Event data type; ignore fmt in entry "data" */

typedef struct tagCAN_EVENT

{

 CAN_DWORD event; /* Event type */

 CAN_TIME time; /* Time when event

 occured */

 CAN_DWORD lost; /* Count of lost events

 since last recorded */

 CAN_TRANSMIT_DATA data; /* Message data (depends

 on event type) */

 CAN_UINT arbitration; /* (unused) */

} CAN_EVENT, *PCAN_EVENT;

Software Documentation F&S CAN Driver | 76 of 95

/* We'll need some defines */

#include "WINIOCTL.h"

/* Additonal IOCTL values for CAN access */

#define CAN_DEV 0x00008007

#define CAN_BUFF METHOD_BUFFERED

#define CAN_READ FILE_READ_ACCESS

#define CAN_WRITE FILE_WRITE_ACCESS

#define CAN_ANY FILE_ANY_ACCESS

#define IOCTL_CAN_WRITE_ACCEPTANCE_FILTER \

 CTL_CODE(CAN_DEV, 0x801, CAN_BUFF, CAN_WRITE)

#define IOCTL_CAN_READ_ACCEPTANCE_FILTER \

 CTL_CODE(CAN_DEV, 0x802, CAN_BUFF, CAN_READ)

#define IOCTL_CAN_SET_BAUDRATE \

 CTL_CODE(CAN_DEV, 0x803, CAN_BUFF, CAN_ANY)

#define IOCTL_CAN_GET_BAUDRATE \

 CTL_CODE(CAN_DEV, 0x804, CAN_BUFF, CAN_ANY)

#define IOCTL_CAN_INIT \

 CTL_CODE(CAN_DEV, 0x805, CAN_BUFF, CAN_ANY)

#define IOCTL_CAN_SET_BAUDRATE_BY_CONSTANT \

 CTL_CODE(CAN_DEV, 0x806, CAN_BUFF, CAN_ANY)

#define IOCTL_CAN_GET_BAUDRATE_BY_CONSTANT \

 CTL_CODE(CAN_DEV, 0x807, CAN_BUFF, CAN_ANY)

#define IOCTL_CAN_SET_CAN_MODE \

 CTL_CODE(CAN_DEV, 0x808, CAN_BUFF, CAN_ANY)

#define IOCTL_CAN_SET_COMMAND \

 CTL_CODE(CAN_DEV, 0x809, CAN_BUFF, CAN_ANY)

#define IOCTL_CAN_WRITE_TRANSMIT_DATA \

 CTL_CODE(CAN_DEV, 0x80A, CAN_BUFF, CAN_WRITE)

#define IOCTL_CAN_READ_EVENT_DATA \

 CTL_CODE(CAN_DEV, 0x80B, CAN_BUFF, CAN_ANY)

#define IOCTL_CAN_READ_TIME \

 CTL_CODE(CAN_DEV, 0x80C, CAN_BUFF, CAN_READ)

#define IOCTL_CAN_SET_DEFAULT_FRAME_FORMAT \

 CTL_CODE(CAN_DEV, 0x80D, CAN_BUFF, CAN_ANY)

#define IOCTL_CAN_TEST_DEVICE \

 CTL_CODE(CAN_DEV, 0x80E, CAN_BUFF, CAN_ANY)

#define IOCTL_CAN_READ_PROPERTIES \

 CTL_CODE(CAN_DEV, 0x80F, CAN_BUFF, CAN_ANY)

#define IOCTL_CAN_READ_REGISTER \

 CTL_CODE(CAN_DEV, 0x810, CAN_BUFF, CAN_ANY)

#define IOCTL_CAN_WRITE_REGISTER \

 CTL_CODE(CAN_DEV, 0x811, CAN_BUFF, CAN_ANY)

#define IOCTL_CAN_READ_REGISTER_RM \

 CTL_CODE(CAN_DEV, 0x812, CAN_BUFF, CAN_ANY)

#define IOCTL_CAN_WRITE_REGISTER_RM \

 CTL_CODE(CAN_DEV, 0x813, CAN_BUFF, CAN_ANY)

#endif /*!__CANBUSIO_H__*/

Software Documentation F&S CAN Driver | 77 of 95

10 Appendix B

10.1 CanTestSuite

We provide a group of sample applications with the CAN bus that should show the usage
and allow an easy configuration and test of the CAN bus settings and operation.

Program Description

CanWrite Command line tool that writes 1000 messages with increasing IDs to the
CAN bus.

Uses WriteFile().

CanRead Command line tool to read and log all events on the CAN bus.

Uses ReadFile().

CanSend Command line tool to send any number of messages on any number of
send channels with any number of parallel threads to the CAN bus. This
can be used to stress test the driver.

Uses IOCTL_CAN_WRITE_TRANSMIT_DATA.

CanMon Command line tool to monitor all events on the CAN bus and log in an
own format.

Uses IOCTL_CAN_READ_EVENT_DATA.

CanCheck More complex, dialog oriented tool to check and set the CAN bus set-
tings. It is also possible to send test messages and monitor the CAN
bus.

Table 12: Programs in CanTestSuite

We will provide the listings to CanWrite and CanRead, as they are rather short and can

serve as additional examples to show how to use the CAN driver interface.

Software Documentation F&S CAN Driver | 78 of 95

10.2 CanWrite

The CanWrite program shows how standard C file handles and fprintf() can be used to

send messages to the CAN bus. Please note that this is the ASCII version of fprintf(),

as WriteFile(), which is called internally by fprintf(), needs ASCII text, not Unicode

text.
On the other hand, this program also shows the limitation that no IOCTL commands can be
issued via this standard C file interface. Hence we have to open the file first with a normal

Windows HANDLE to set the baud rate. However we don’t need any READ or WRITE access

to do this.

/**/

/*** ***/

/*** C A N M e s s a g e W r i t e r ***/

/*** ***/

/**/

/*** File: CanWrite.c ***/

/*** Author: H. Keller ***/

/*** ***/

/*** Description: ***/

/*** Command line tool to send messages to a CAN bus. ***/

/**/

/*** THIS CODE AND INFORMATION IS PROVIDED "AS IS" ***/

/*** WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED ***/

/*** OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE ***/

/*** IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR ***/

/*** FITNESS FOR A PARTICULAR PURPOSE. ***/

/*** Copyright (c) 2008 F&S Elektronik Systeme GmbH. ***/

/*** All rights reserved. ***/

/**/

#include <windows.h>

#include "canbusio.h"

/**

*** Function: int _tmain(int argc, TCHAR* argv[]) ***

*** ***

*** Parameters: argc: Command line argument count ***

*** argv: Array of argument strings ***

*** ***

*** Return: 0: Success ***

*** 1: Error, device not available ***

*** 2: Usage (e.g. after wrong argument) ***

*** ***

*** Description ***

*** ----------- ***

*** Send 1000 messages to the CAN port. ***

**/

int _tmain(int argc, TCHAR *argv[])

{

 int i;

 TCHAR *pDevice = _T("CID1:");

 TCHAR *pBaudrate = NULL;

 TCHAR *pLogfile = NULL;

 BOOL bHelp = FALSE;

 DWORD dwBaudrate;

 HANDLE hCAN;

 FILE *pfCAN;

 FILE *pfLogfile;

 /* Say hello */

 _tprintf(_T("CanWrite V3.0\n"));

 /* Parse command line arguments */

 for (i=1; i<argc; i++)

 {

 TCHAR *p = argv[i];

 /* Check for options */

 if (*p != '-')

 {

 _tprintf(_T("Unknown argument '%s'\n"), p);

 bHelp = TRUE;

 break;

 }

 p++;

Software Documentation F&S CAN Driver | 79 of 95

 /* Parse options without an argument */

 if ((*p == '?') || (*p == 'h'))

 {

 bHelp = TRUE;

 break;

 }

 /* Remaining options need an argument */

 if (i+1 >= argc)

 {

 _tprintf(_T("Missing argument to option ")

 _T("-%c\n"), *p);

 bHelp = TRUE;

 break;

 }

 else

 {

 i++;

 if (*p == 'd')

 pDevice = argv[i];

 else if (*p == 'b')

 pBaudrate = argv[i];

 else if (*p == 'f')

 pLogfile = argv[i];

 else

 {

 _tprintf(_T("Unknown option -%c\n"), *p);

 bHelp = TRUE;

 break;

 }

 }

 }

 /* Print usage, if required */

 if (bHelp)

 {

 _tprintf(_T("CanWrite\n")

 _T(" -d <dev> : Device name (CID1:)\n")

 _T(" -b <baud>: Set baudrate\n")

 _T(" -f <name>: Log file name\n")

 _T(" -h : Show this help\n"));

 return 2;

 }

 /* Open device in configuration mode (no access) */

 hCAN = CreateFile(pDevice, 0, 0, NULL,

 OPEN_EXISTING, 0, NULL);

 if(hCAN == INVALID_HANDLE_VALUE)

 {

 _tprintf(_T("Can't open device %s, error %d\n"),

 pDevice, GetLastError());

 return 1;

 }

 /* If requested, set new baud rate */

 if (pBaudrate)

 {

 dwBaudrate = _tcstoul(pBaudrate, NULL, 0);

 DeviceIoControl(hCAN, IOCTL_CAN_SET_BAUDRATE,

 &dwBaudrate, sizeof(dwBaudrate),

 NULL, 0, NULL, NULL);

 }

 /* Read current baud rate */

 DeviceIoControl(hCAN, IOCTL_CAN_GET_BAUDRATE, NULL,

 0, &dwBaudrate, sizeof(dwBaudrate),

 NULL, NULL);

 /* Close file again */

 CloseHandle(hCAN);

 /* Open device with standard file handle */

 pfCAN = _wfopen(pDevice, _T("w+t"));

 if (pfCAN)

 {

 /* Open log file */

 if (pLogfile)

 {

 pfLogfile = _wfopen(pLogfile, _T("w"));

 if (!pfLogfile)

Software Documentation F&S CAN Driver | 80 of 95

 {

 _tprintf(_T("Can't open log file '%s', ")

 _T("error %d\n"), pLogfile,

 GetLastError());

 pLogfile = NULL;

 }

 else

 _tprintf(_T("Using log file '%s'\n"),

 pLogfile);

 }

 /* Send 1000 messages */

 _tprintf(_T("Start sending 1000 messages to %s, ")

 _T("baudrate=%d Hz\n"), pDevice,

 dwBaudrate);

 for (i=0; i<1000; i++)

 {

 /* Send one message to the CAN port */

 fprintf(pfCAN, "%x 0 8 0 0 0 0 0 0 0 0\n", i);

 fflush(pfCAN);

 /* Write the same message to the log file */

 if (pLogfile)

 {

 fprintf(pfLogfile,

 "%x 0 8 0 0 0 0 0 0 0 0\n", i);

 fflush(pfLogfile);

 }

 }

 /* Close log file */

 if (pLogfile)

 fclose(pfLogfile);

 /* Close CAN device */

 fclose(pfCAN);

 }

 return 0;

}

Software Documentation F&S CAN Driver | 81 of 95

10.3 CanRead

The CanRead program shows how the text interface via ReadFile() can be used to direct-

ly output the arriving event without any further processing. Please note how we use

printf() instead of _tprintf() in the appropriate line when writing the buffer to

stdout, as the result from ReadFile() is ASCII text, not Unicode text.

/**/

/*** ***/

/*** C A N E v e n t R e a d e r ***/

/*** ***/

/**/

/*** File: CanRead.c ***/

/*** Author: H. Keller ***/

/*** ***/

/*** Description: ***/

/*** Command line tool to read events from a CAN bus. ***/

/**/

/*** THIS CODE AND INFORMATION IS PROVIDED "AS IS" ***/

/*** WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED ***/

/*** OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE ***/

/*** IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR ***/

/*** FITNESS FOR A PARTICULAR PURPOSE. ***/

/*** Copyright (c) 2008 F&S Elektronik Systeme GmbH. ***/

/*** All rights reserved. ***/

/**/

#include <windows.h>

#include "canbusio.h"

/**

*** Function: int _tmain(int argc, TCHAR* argv[]) ***

*** ***

*** Parameters: argc: Command line argument count ***

*** argv: Array of argument strings ***

*** ***

*** Return: 0: Success ***

*** 1: Error, device not available ***

*** 2: Usage (e.g. after wrong argument) ***

*** ***

*** Description ***

*** ----------- ***

*** Monitor all events coming in on the CAN port ***

**/

int _tmain(int argc, TCHAR *argv[])

{

 int i;

 TCHAR *pDevice = _T("CID1:");

 TCHAR *pBaudrate = NULL;

 TCHAR *pLogfile = NULL;

 BOOL bHelp = FALSE;

 DWORD dwBaudrate;

 HANDLE hLogfile;

 HANDLE hCAN;

 DWORD dwRead;

 char pBuffer[100];

 CAN_ACCEPTANCE_FILTER cFilter;

 COMMTIMEOUTS cTimeouts;

 /* Say hello */

 _tprintf(_T("CanRead V3.0\n"));

 /* Parse command line arguments */

 for (i=1; i<argc; i++)

 {

 TCHAR *p = argv[i];

 /* Check for options */

 if (*p != '-')

 {

 _tprintf(_T("Unknown argument '%s'\n"), p);

 bHelp = TRUE;

 break;

 }

 /* Parse options without an argument */

Software Documentation F&S CAN Driver | 82 of 95

 if ((*p == '?') || (*p == 'h'))

 {

 bHelp = TRUE;

 break;

 }

 /* Parse command line arguments */

 for (i=1; i<argc; i++)

 {

 TCHAR *p = argv[i];

 /* Check for options */

 if (*p != '-')

 {

 _tprintf(_T("Unknown argument '%s'\n"), p);

 bHelp = TRUE;

 break;

 }

 /* Parse options without an argument */

 if ((*p == '?') || (*p == 'h'))

 {

 bHelp = TRUE;

 break;

 }

 /* Check for options */

 if (*p != '-')

 {

 _tprintf(_T("Unknown argument '%s'\n"), p);

 bHelp = TRUE;

 break;

 }

 /* Parse options without an argument */

 if ((*p == '?') || (*p == 'h'))

 {

 bHelp = TRUE;

 break;

 }

 /* Remaining options need an argument */

 if (i+1 >= argc)

 {

 _tprintf(_T("Missing argument to option ")

 _T("-%c\n"), *p);

 bHelp = TRUE;

 break;

 }

 else

 {

 i++;

 if (*p == 'd')

 pDevice = argv[i];

 else if (*p == 'b')

 pBaudrate = argv[i];

 else if (*p == 'f')

 pLogfile = argv[i];

 else

 {

 _tprintf(_T("Unknown option -%c\n"), *p);

 Help = TRUE;

 break;

 }

 }

 }

 /* Print usage, if required */

 if (bHelp)

 {

 _tprintf(_T("CanRead\n")

 _T(" -d <dev> : Device name (CID1:)\n")

 _T(" -b <baud>: Set baudrate\n")

 _T(" -f <name>: Log file name\n")

 _T(" -h : Show this help\n"));

 return 2;

 }

 /* Open device */

 hCAN = CreateFile(pDevice, GENERIC_READ, 0, NULL,

 OPEN_EXISTING, 0, NULL);

 if (hCAN == INVALID_HANDLE_VALUE)

Software Documentation F&S CAN Driver | 83 of 95

 {

 _tprintf(_T("Can't open device %s, error %d\n"),

 pDevice, GetLastError());

 return 1;

 }

 /* If requested, set new baud rate */

 if (pBaudrate)

 {

 dwBaudrate = _tcstoul(pBaudrate, NULL, 0);

 DeviceIoControl(hCAN, IOCTL_CAN_SET_BAUDRATE,

 &dwBaudrate, sizeof(dwBaudrate),

 NULL, 0, NULL, NULL);

 }

 /* Read current baud rate */

 DeviceIoControl(hCAN, IOCTL_CAN_GET_BAUDRATE, NULL,

 0, &dwBaudrate, sizeof(dwBaudrate),

 NULL, NULL);

 /* Set acceptance filter to accept all IDs */

 cFilter.mask = 0xFFFFFFFF;

 cFilter.code = 0x00000000;

 DeviceIoControl(hCAN, IOCTL_CAN_WRITE_ACCEPTANCE_FILTER,

 &cFilter, sizeof(cFilter), NULL, 0,

 NULL, NULL);

 /* Set read timeout to infinite */

 cTimeouts.ReadTotalTimeoutConstant = INFINITE;

 SetCommTimeouts(hCAN, &cTimeouts);

 /* Open log file */

 if (pLogfile)

 {

 hLogfile = CreateFile(pLogfile, GENERIC_WRITE, 0,

 NULL, CREATE_ALWAYS,

 FILE_FLAG_WRITE_THROUGH,

 NULL);

 if (hLogfile == INVALID_HANDLE_VALUE)

 {

 _tprintf(_T("Can't open log file '%s', ")

 _T("error %d\n"), pLogfile,

 GetLastError());

 pLogfile = NULL;

 }

 else

 _tprintf(_T("Using log file '%s'\n"),

 pLogfile);

 }

 /* Start receiving events */

 _tprintf(_T("Start receiving events from %s, ")

 _T("baudrate=%d Hz\n"), pDevice, dwBaudrate);

 for (;;)

 {

 /* Check for Ctl-C */

 if (GetAsyncKeyState(VK_CONTROL)

 && GetAsyncKeyState('C'))

 break;

 /* Read next event */

 if (!ReadFile(hCAN, pBuffer, sizeof(pBuffer),

 &dwRead, NULL))

 {

 _tprintf(_T("Read error %d\n"),

 GetLastError());

 break;

 }

 if (dwRead)

 {

 /* Print event */

 printf(pBuffer);

 /* Write event to log file */

 if (pLogfile)

 {

 DWORD dwWritten;

 WriteFile(hLogfile, pBuffer, dwRead,

Software Documentation F&S CAN Driver | 84 of 95

 &dwWritten, NULL);

 }

 }

 }

 /* Close log file */

 if (pLogfile)

 CloseHandle(hLogfile);

 /* Close CAN device */

 CloseHandle(hCAN);

 return 0;

}

Software Documentation F&S CAN Driver | 85 of 95

10.4 CanCheck

The CanCheck program provides a graphical frontend to comfortably configure and test the
CAN port. It allows to send messages by creating message generators, reports all received
events, and allows to set acceptance filter, event mask, baud rate, CAN mode, frame format,
and last but not least all registry settings.

Main Dialog
If you start the program, you see the following dialog.

In the section CAN Bus Settings you can set the baud rate, the CAN mode, and the frame
format by clicking on the triangle and selecting one of the entries that appear in the drop-
down list. The baud rate can also be entered directly as a number.
In section CAN Commands you can send a special command to the current CAN port.
In section CAN Port CIDx: you see which CAN port currently is in use and you can switch to
another port, if the board supports more than one CAN port. You can also open a new dialog
where you can modify all registry settings.
Section Open Channel finally allows to open virtual send and receive channels. You can ei-
ther do this independently of each other, or you can open a combined send and receive

channel. The difference is that you’ll only get events of type CANBUS_EVENT_TRANSMITTED

if you open a combined channel (see description of virtual channels on page 22).
Each click on one of these buttons will open a separate window with the specific send or re-
ceive information. When clicking on Send & Receive, both types of windows will open at
once. You can see from the file handle that will be displayed in the title bar of these windows
that they belong together.

Software Documentation F&S CAN Driver | 86 of 95

Registry Settings Dialog
If you clicked on button Set Registry in the main dialog, a new dialog shows up.

Here again you can select values from the drop-down lists, or you can enter the numbers

directly into the fields. Please note that AcceptanceCode and AcceptanceMask are rep-

resented as hexadecimal numbers. For the meaning of these values, please refer to the de-
tailed description of registry values on page 15.
If you close the dialog with OK, the new values are directly written into the registry. Other-
wise with Cancel, the changes are discarded and the registry remains unchanged.
Please note: As new registry values only get active after restarting the board, the program
will still use the previous values further on, even if you acknowledged the dialog with OK.
This lasts until you leave the program.

Software Documentation F&S CAN Driver | 87 of 95

Receive Dialog
If you opened a receive channel window by pressing one of the buttons Receive or Send &
Receive in the main dialog, you will be presented with the following view.

In section Events you’ll see a list of events that occurred on this virtual channel. From left to
right you see the following entries.

 Column Event/Time shows the event type as an icon and the time when this event hap-

pened. In fact this is only the low part of the CAN_TIME structure.

 Column Lost shows the number of lost events since the previous entry.
In case of a received, transmitted or aborted message, there are additional entries.

 Column Frm shows the frame type of the message: STD for a Standard Frame or EXT
for an Extended Frame.

 Column ID shows the message ID as given in the CAN_TRANSMIT_DATA structure, i.e.

aligned as configured with registry value Align.

 Column R shows whether the message had the RTR flag set (1) or not (0).

 Column L shows the data length code DLC (0 to F).

 Finally column Data shows zero to eight data bytes.
All values are given hexadecimal!

The event types are shown as an icon. They have the following meaning.

Icon Event type

 CANBUS_EVENT_RECEIVED

 CANBUS_EVENT_TRANSMITTED

 CANBUS_EVENT_ENTERING_STANDBY

 CANBUS_EVENT_LEAVING_STANDBY

 CANBUS_EVENT_OVERRUN

 CANBUS_EVENT_ABORTED

 CANBUS_EVENT_WARNING

 CANBUS_EVENT_BUS_ERROR

 CANBUS_EVENT_PASSIVE

 CANBUS_EVENT_ARBITRATION_LOST

 CANBUS_EVENT_CHANGED

Software Documentation F&S CAN Driver | 88 of 95

If you press button Overrun, CANBUS_CMD_CLEAR_OVERRUN is sent to the CAN bus. This

can be used to clear an overrun status.
Button Open Logfile is used to start writing the event list also to a file. You will be presented
a file selection dialog to enter a file name. This file will be opened and all subsequent events
are not only shown in the window, but also written to the file as text. The name of the log file
will be shown in the group frame of this section. At the same time, button Open Logfile
changes to Close Logfile. Clicking on it now will stop logging to the file.
Button Hide Column Headers will remove the header line from the event list. This makes
room for another row of event data and may be useful on very small displays where only
very few rows are visible.
Finally button Clear Events will simply erase the event list. This has no influence on any cur-
rently open logfile.

In section Event Mask you can tell which events should be recorded in the event list. An
event type that is active has a pushed down button, and event that is not active is shown as
unpushed button. You can either toggle a single event type by simply clicking on the icon
button, or you can activate or deactivate all event types at once by clicking on the All or the
None button. The change takes effect immediately. The current setting in hexadecimal is
given in the group frame description itself.
In section Acceptance Filter you can modify the filter settings for this virtual channel. The
current settings can be seen in hexadecimal in the frame description. The row STD shows
how the filter will work when receiving Standard Frames, and the row EXT shows the filter
when receiving Extended Frames. These meanings depend on the current registry settings

of the Align and MaskActive values. The possible bit values are:

Bit value Meaning

0 Bit must be zero to be accepted

1 Bit must be one to be accepted

+ Bit is always accepted

A new filter value can be entered in the white edit fields at the bottom as two hexadecimal
values for Code and Mask. The change takes effect after you press button Set Filter.

Software Documentation F&S CAN Driver | 89 of 95

Send Dialog
If you opened a send channel window by pressing one of the buttons Send or Send & Re-
ceive in the main dialog, you will be presented with the following view.

The idea behind this window is to create so called message generators that automatically
generate messages with predefined content and in predefined time intervals. These genera-
tors can also automatically increment or decrement the values they send and they can re-
peat or only run for one cycle. Any number of generators can be created.
Section Messages shows a list of all actually sent messages. Each row represents one mes-
sage. From left to right you see the following entries.

 Column Time shows the time when this message was sent. In fact this is only the low

part of the CAN_TIME structure.

 Column Gen. shows the index number of the message generator that created this mes-
sage. Generator indexes are counted beginning with zero.

 Column Frm shows the frame type of the message: STD for a Standard Frame or EXT
for an Extended Frame.

 Column ID shows the message ID as given in the CAN_TRANSMIT_DATA structure, i.e.

aligned as configured with registry value Align.

 Column R shows whether the message had the RTR flag set (1) or not (0).

 Column L shows the data length code DLC (0 to F).

 Finally column Data shows zero to eight data bytes.
All values are given hexadecimal!

If you press button Abort Transmission, the command

CANBUS_CMD_ABORT_TRANSMISSION is sent to the CAN bus. This will abort the current

transmission and will also clear the send buffer.
Button Open Logfile is used to start writing the message list also to a file. You will be pre-
sented a file selection dialog to enter a file name. This file will be opened and all subsequent
messages are not only shown in the window, but also written to this file as text. The name of
the log file will be shown in the group frame of this section. At the same time, button Open
Logfile changes to Close Logfile. Clicking on it now will stop logging to the file.
Button Hide Column Headers will remove the header line from the message list and the
generators list (see below). This makes room for another row of data in each of these lists
and may be useful on very small displays where only very few rows are visible.

Section Generators shows a list of all available message generators. To be precise, each
row shows the time, when the generator will send its next message and the message itself,
that it will send. The meaning of the columns is the same as in the messages list above.
Column Gen. shows the index number of this generator.

Software Documentation F&S CAN Driver | 90 of 95

At the beginning, this list is empty. You can add new generators by clicking on button New
and entering the appropriate generator information (see below).
A message generator may be active or paused. An active generator will generate a new
message after some time, a paused generator will not generate new messages. You can
select any generator in the list and toggle check mark Activate to switch between active and
paused state. Or you can pause or activate all generators at once by clicking on button
Pause All or Activate All respectively. A paused generator will show
-Paused-

instead of a new time.
By clicking on button Edit, you can modify the settings of the currently selected message
generator and by clicking on button New, you can add a new message generator. In both
cases you are presented with a new window.

Software Documentation F&S CAN Driver | 91 of 95

Here you can enter all data of the generator.

 Field ID allows to enter the message ID that will be used when sending the message. It

will be aligned as configured with registry value Align.

 Field Data Byte(s) (DLC) allows to enter a number between 0 and 8. It is the data length
code DLC.

 Depending on the number in DLC, the according number of data byte fields below will be
enabled and you can enter the appropriate values there.

 If you want to set the RTR flag of the message, check the field RTR. Each click toggles
the check mark.

 If you want to send a message in Extended Frame Format, check the field EXT. Other-
wise a message with Standard Frame Format will be sent. Each click toggles the check
mark.
Remark: This field is only available if the CAN bus is in CAN2.0B mode.

 Field Delay defines the time in milliseconds, before the message repeats.
All numbers but Delay are given hexadecimal, Delay is given decimal.
There exists a second form of generator, the so called Range Generator. By checking field
Use Range, the dialog changes to the following view.

The difference here is, that you can give From and To values for ID and data bytes. This
means the generator will start with the given values from line From and send this as first
message. Then it will increase (or decrease) the values by one and after the given Delay, it
will send this new message. If the From value is smaller than the To value, the value is in-
cremented each time. If the From value is higher than the To value, the value is decrement-
ed each time.
The two fields Wrap and Repeat that appear when Use Range is activated, decide what
happens when the To value is reached. If Wrap is active, each value that reached To will
start again at From. Otherwise it will stay at the To value. If Repeat is active, the generator
will run indefinitely. If Repeat is not active, the generator automatically will switch to state

Paused if it has completed one cycle (counted from the largest value difference in any of the

values). It can be re-activated for another cycle then.

Software Documentation F&S CAN Driver | 92 of 95

Example 1
The message generator shown in the window above will generate an Extended Frame mes-

sage with a fix ID 0x025E0235 and three data bytes every two seconds.

The first data byte will be 0x00 in the first cycle, 0x01 in the second cycle and so on until it

reaches 0x11. Then it will wrap around back to 0x00 again in the next cycle.

The second data byte will be 0x11 in the first cycle, 0x12 in the second cycle and so on un-

til it reaches 0x22. Then it will wrap around back to 0x11 in the next cycle.

The third data byte will be 0x33 in the first cycle, 0x32 in the second cycle and so on until it

reaches 0x00. Then it will wrap around back to 0x33 in the next cycle.

The generator does not stop automatically because Repeat is activated.

Example 2
A generator with the same values, but Repeat not activated, would stop after 0x34 = 52

messages, as 0x33 to 0x00 is the largest difference of values. That means it stops when

the third data byte has reached its To value of 0x00. The first two data bytes would have

gone three times through their whole range during this time.

To close the message generator dialog, you can press on one of the buttons Activate,
Pause, or Cancel. Button Activate takes the new settings and the generator is immediately
activated, i.e. sends the first message right away. Button Pause takes the settings, but the
generator is paused, i.e. does not generate a message until activated later. And when press-
ing button Cancel, the new settings are discarded. That means either no new generator is
created or, if you were editing an existing generator, this generator remains unchanged.

Remark
When editing an existing generator, this generator is automatically paused while in the gen-
erator dialog. If you return by Cancel, the previous state is resumed. Otherwise the new set-
tings are taken instead and the new state depends on whether you have pressed Activate or
Pause.

Software Documentation F&S CAN Driver | 93 of 95

11 Important Notice

The information in this publication has been carefully checked and is believed to be entirely
accurate at the time of publication. F&S Elektronik Systeme assumes no responsibility, how-
ever, for possible errors or omissions, or for any consequences resulting from the use of the
information contained in this documentation.
F&S Elektronik Systeme reserves the right to make changes in its products or product speci-
fications or product documentation with the intent to improve function or design at any time
and without notice and is not required to update this documentation to reflect such changes.
F&S Elektronik Systeme makes no warranty or guarantee regarding the suitability of its
products for any particular purpose, nor does F&S Elektronik Systeme assume any liability
arising out of the documentation or use of any product and specifically disclaims any and all
liability, including without limitation any consequential or incidental damages.
Specific testing of all parameters of each device is not necessarily performed unless re-
quired by law or regulation.
Products are not designed, intended, or authorised for use as components in systems in-
tended for applications intended to support or sustain life, or for any other application in
which the failure of the product from F&S Elektronik Systeme could create a situation where
personal injury or death may occur. Should the Buyer purchase or use a F&S Elektronik Sys-
teme product for any such unintended or unauthorised application, the Buyer shall indemnify
and hold F&S Elektronik Systeme and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, expenses, and reasonable attorney
fees arising out of, either directly or indirectly, any claim of personal injury or death that may
be associated with such unintended or unauthorized use, even if such claim alleges that
F&S Elektronik Systeme was negligent regarding the design or manufacture of said product.
Specifications are subject to change without notice.

Software Documentation F&S CAN Driver | 94 of 95

12 Warranty Terms

Hardware Warranties
F&S guarantees hardware products against defects in workmanship and material for a peri-
od of two (2) years from the date of shipment. Your sole remedy and F&S’s sole liability shall
be for F&S, at its sole discretion, to either repair or replace the defective hardware product at
no charge or to refund the purchase price. Shipment costs in both directions are the respon-
sibility of the customer. This warranty is void if the hardware product has been altered or
damaged by accident, misuse or abuse.

Software Warranties
Software is provided “AS IS”. F&S makes no warranties, either express or implied, with re-
gard to the software object code or software source code either or with respect to any third
party materials or intellectual property obtained from third parties. F&S makes no warranty
that the software is useable or fit for any particular purpose. This warranty replaces all other
warranties written or unwritten. F&S expressly disclaims any such warranties. In no case
shall F&S be liable for any consequential damages.

Disclaimer of Warranty
THIS WARRANTY IS MADE IN PLACE OF ANY OTHER WARRANTY, WHETHER
EXPRESSED, OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A SPECIFIC
PURPOSE, NON-INFRINGEMENT OR THEIR EQUIVALENTS UNDER THE LAWS OF
ANY JURISDICTION, EXCEPT THE WARRANTY EXPRESSLY STATED HEREIN. THE
REMEDIES SET FORTH HEREIN SHALL BE THE SOLE AND EXCLUSIVE REMEDIES OF
ANY PURCHASER WITH RESPECT TO ANY DEFECTIVE PRODUCT.

Limitation on Liability
UNDER NO CIRCUMSTANCES SHALL F&S BE LIABLE FOR ANY LOSS, DAMAGE OR
EXPENSE SUFFERED OR INCURRED WITH RESPECT TO ANY DEFECTIVE PRODUCT.
IN NO EVENT SHALL F&S BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL
DAMAGES THAT YOU MAY SUFFER DIRECTLY OR INDIRECTLY FROM USE OF ANY
PRODUCT. BY ORDERING THE PRODUCT, THE CUSTOMER APPROVES THAT THE
F&S PRODUCT, HARDWARE AND SOFTWARE, WAS THOROUGHLY TESTED AND HAS
MET THE CUSTOMER'S REQUIREMETS AND SPECIFICATIONS

Software Documentation F&S CAN Driver | 95 of 95

Tables

Table 1: Registry value - TxMode.. 15
Table 2: Registry value – CanMode2B .. 17
Table 3: Registry value - Format ... 17
Table 4: Registry value - Virtualize .. 17
Table 5: Registry value - MaskActive .. 18
Table 6: Registry value - Align .. 18
Table 7: Registry value - DirectInterface ... 19
Table 8: Driver Interface Functions ... 20
Table 9: CAN Events... 25
Table 10: ID and Filter Alignment .. 27
Table 11: Function DeviceIiControl – Control Codes ... 47
Table 12: Programs in CanTestSuite .. 77

	Introduction
	Overview

	Table of Content
	1 CAN Bus Operation
	2 Acceptance Filters
	3 CAN Bus Network Example
	4 Send Buffer and Event Queue
	5 Possible interface conflicts
	6 Installing the CAN Software Driver
	6.1 Installation with the CAB File
	6.2 Manual Installation
	6.3 Detailed Description of the Registry Values

	7 Using the CAN Driver in Applications
	7.1 Driver Interface
	7.2 Textual and Binary Message Representation
	7.3 Virtual Send and Receive Channels
	7.4 Send Buffer vs. Single Message Mode
	7.5 Available Events
	7.6 Event Mask
	7.7 Counter for Lost Events
	7.8 Timeouts
	7.9 Frame ID and Acceptance Filter Alignment
	7.10 New Features of Version 2.x

	8 CAN Driver Reference
	8.1 CreateFile()
	8.2 CloseHandle()
	8.3 WriteFile()
	8.4 ReadFile()
	8.5 SetCommTimeouts()
	8.6 GetCommTimeouts()
	8.7 SetCommMask()
	8.8 GetCommMask()
	8.9 WaitCommEvent()
	8.10 DeviceIoControl()
	8.11 IOCTL_CAN_WRITE_ACCEPTANCE_FILTER
	8.12 IOCTL_CAN_READ_ACCEPTANCE_FILTER
	8.13 IOCTL_CAN_SET_BAUDRATE
	8.14 IOCTL_CAN_GET_BAUDRATE
	8.15 IOCTL_CAN_SET_BAUDRATE_BY_CONSTANT
	8.16 IOCTL_CAN_GET_BAUDRATE_BY_CONSTANT
	8.17 IOCTL_CAN_SET_CAN_MODE
	8.18 IOCTL_CAN_SET_DEFAULT_FRAME_FORMAT
	8.19 IOCTL_CAN_WRITE_TRANSMIT_DATA
	8.20 IOCTL_CAN_READ_EVENT_DATA
	8.21 IOCTL_CAN_READ_TIME
	8.22 IOCTL_CAN_READ_PROPERTIES
	8.23 IOCTL_CAN_SET_COMMAND
	Standby
	Listen
	Virtualize

	8.24 IOCTL_CAN_READ_REGISTER
	8.25 IOCTL_CAN_WRITE_REGISTER
	8.26 IOCTL_CAN_READ_REGISTER_RM
	8.27 IOCTL_CAN_WRITE_REGISTER_RM
	8.28 IOCTL_CAN_INIT
	8.29 IOCTL_CAN_TEST_DEVICE

	9 Appendix A
	9.1 canbusio.h

	10 Appendix B
	10.1 CanTestSuite
	10.2 CanWrite
	10.3 CanRead
	10.4 CanCheck

	11 Important Notice
	12 Warranty Terms
	Tables

