Hardware Documentation

PicoMODA9 PicoMODA9.2

Version 1.10 (2023-09-01)

© F&S Elektronik Systeme GmbH Untere Waldplätze 23 D-70569 Stuttgart Fon: +49(0)711-123722-0 Fax: +49(0)711 – 123722-99

About This Document

This document describes the hardware of the PicoMODA9-digital for LVDS display interface. For the TTL display interface version of this product there is a separate document. The latest version of this document can be found at <u>https://www.fs-net.de/</u>.

History

Date	V	Platform	A,M,R	Chapter	Description	Au
20.01.2014		PicoMODA9	A	-	Hardware documentation, preliminary	KW
22.07.2014	0.01	PicoMODA9	М	*	Changed to new company CI	
07.06.16	1.00	PicoMODA9	А	5	Add power consumption, operat. cond.	
			А	6	Add storage cond	
01.09.2023	1.10	PicoMODA9	М	1	Add info for new touchcontroller	DB

V Version

A,M,R Added, Modified, Removed Au Author

Table of Content

Abo	ut This I	Document	5
Histo	ory		5
Tabl	e of Coi	ntent	3
1	Techni	cal Data	.5
	1.1	Touch Controller	.5
	1.2	Connectors	.5
2	Connee	ctors	6
	2.1	Counting of the connector pins	.6
	2.2	IO-Pin limitations	.6
	2.3	Connector J1 (main connector)	0. 0
	2.5	microSD connector	0
2	Intorfa	and Signal description 1	1
5	2 1	Ethernet connection	1
	3.1	Serial port	. 1 1
	3.3	USB Host	1
	3.4	USB device	1
	3.5	SPI1	1
	3.6	12C1	2
	3.7 3.8	SD card	12
	3.9	Touch	2
	3.10	Audio I/F1	2
	3.11	IO/ IRQ1	2
	3.12	/PONRES1	2
	3.13	Address/Data-Bus	3
4	Dimens	sions1	4
5	Techni	cal Data1	5
	5.1	Thermal Specification1	6
	5.2	DC electrical characteristics for 3.3V IO pins	6
	5.3	Operating conditions, Power consumption and cooling1	6
6	Storage	e conditions1	7
7	Append	dix1	8
	Importar	nt Notice1	8
	Warrant	y Terms1	8
	Figures.	1	9

1 Technical Data

1.1 Touch Controller

Due to EOL, the touch controller is changed from SX8674 to TSC2004. Boards with the new touchcontroller are named PicoMODA9.2. New operating system software is required for PicoMODA9.2.

1.2 Connectors

The PicoMODA9 is equipped with a TycoElectronics 5177984-6 (140 pin, 0.8mm) connector from '0.8mm Free Height (FH) Connectors' series. For position and orientation please look chapter 4 "Dimensions"

Matching connectors are:

5mm stacking height:TycoElectronics 5177983-69mm stacking height:TycoElectronics 5-5179009-613mm stacking height:TycoElectronics 5-5179010-6

2 Connectors

2.1 Counting of the connector pins

The connector plug of PicoMODA9 LVDS will be treated as follows. Pin 1 is marked in Figure 1. The row with pin 1 contains all odd-numbered pins (1, 3, 5, 7 etc.), and corresponding to this, the row without pin 1 contains all even-numbered pins (2, 4, 6, 8 etc.).

2.2 IO-Pin limitations

PicoMODA9 LVDS is equipped with 45 pins that can be used as digital-IO. Most of these pins are multiplexed, so you have to make sure that these pins are used for one purpose only. For example, if you intend to use IO0 to IO3 you have to make sure that the COM2 is disabled. Additionally there are some IO-Pins which are used internally and whose primary function can't be disabled completely.

2.3 Connector J1 (main connector)

	J1				
Pin	Signal	Default Interface	Alternative Function		
1	IO64	SPI CS	I/O-Pin 64		
2	IO65	SPI CLK	I/O-Pin 65		
3	IO66	SPI MISO	I/O-Pin 66		
4	1067	SPI MOSI	I/O-Pin 67		
5	CAN-TX	CAN2.0 TX			
6	CAN-RX	CAN2.0 RX			
7	RX-	Ethernet RX-			
8	TX-	Ethernet TX-			
9	RX+	Ethernet RX+			
10	TX+	Ethernet TX+			
11	V33	+3,3V ±5% DC			
12	V33	+3,3V ±5% DC			
13	GND	GND			
14	GND	GND			
15	/PONRES	CPU Reset (active low)			
16	VBAT	+3V +3,6V DC			
		(Battery buffering RTC) (*)			
17	IO1	COM2 TxD			
18	100	COM2 RxD			
19	103	COM2 RTS			
20	102	COM2 CTS			
21	IO5	COM1 TxD			
22	IO4	COM1 RxD			
23	107	COM3 TxD	I/O-Pin 7		
24	IO6	COM3 RxD	I/O-Pin 6		
25	OTGDM	USB2.0 OTG Dev./Host -			
26	USBDN	USB2.0 Host -			
27	OTGDP	USB2.0 OTG Dev./Host +			
28	USBDP	USB2.0 Host +			
29	109	I/O-Pin 9 / GPIO5			
30	IO8	USB Host Power On	I/O-Pin 8		
31	IO11	I2C SDA	I/O-Pin 11		

	J1					
Pin	Signal	Default Interface	Alternative Function			
32	IO10	USB Device Detect	I/O-Pin 10			
33	1076	I/O-Pin 76				
34	1012	I2C SCI	I/O-Pin 12			
35	BOOTSELO	NC (do not use)				
36	1077	I/O-Pin 77				
37						
20	BOOTSEL1					
30						
39		GND				
40	GND					
41	1014	1/O-PIn 14 / GPIO1				
42	1013	1/O-Pin 13 / GPIO0				
43	1016	I/O-Pin 16 / GPIO3				
44	1015	I/O-Pin 15 / GPIO2				
45	IO18	SD-Card CLK	I/O-Pin 18			
46	1017	I/O-Pin 17 / GPIO4				
47	1020	SD-Card DAT0	I/O-Pin 20			
48	IO19	SD-Card CMD	I/O-Pin 19			
49	1022	SD-Card DAT2	I/O-Pin 22			
50	IO21	SD-Card DAT1	I/O-Pin 21			
51	IO24	SD-Card Detect	I/O-Pin 24			
52	1023	SD-Card DAT3	I/O-Pin 23			
53	IO26	SD-Card Write Protect	I/O-Pin 26			
54	1025	SD-Card Power Enable	I/O-Pin 25			
55	1028	LCD DEN (Display enable)	I/O-Pin 28			
56	1027	I CD Enable	I/O-Pin 27			
57	1030		1/O-Pin 30			
58	1029		1/O-Pin 29			
50						
60			1/O Pin 31			
61			1/0 Pin 32			
62			1/O-F111 52			
62						
03			1/0-Pin 34			
04			1/0-Pin 33			
65	VI04		I/O-PIN 36			
66	VI03	LCD VD3	I/O-Pin 35			
6/	VIO6	LCD VD6	I/O-Pin 38			
68	VIO5	LCD VD5	I/O-Pin 37			
69	VIO8	LCD VD12	I/O-Pin 40			
70	VIO7	LCD VD7	I/O-Pin 39			
71	VIO10	LCD VD14	I/O-Pin 42			
72	VIO9	LCD VD13	I/O-Pin 41			
73	VIO12	LCD VD18	I/O-Pin 44			
74	VIO11	LCD VD15	I/O-Pin 43			
75	VIO14	LCD VD20	I/O-Pin 46			
76	VIO13	LCD VD19	I/O-Pin 45			
77	VIO16	LCD VD22	I/O-Pin 48			
78	VIO15	LCD VD21	I/O-Pin 47			
79	VIO18	LCD VLINE	I/O-Pin 50			
80	VIO17	LCD VD23	I/O-Pin 49			
81	VIO20	LCD VM	I/O-Pin 52			
82	VI019		I/O-Pin 51			
83	GND	GND				
84	GND	GND				
85	GND	GND				
86			1/0 Pin 53			
87	1070					
01	1070	1/0 Pin 71				
ÖÖ		1/U-PIII / I				

	J1					
Pin	Signal	Default Interface	Alternative Function			
89	/WAIT	Bus Wait (active low)				
90	1072	I/O-Pin 72				
91	CS4	Chip Select 2				
92	CS5	Chip Select 3				
93	1073	I/O-Pin 73				
94	IOxx	I/O-Pin				
95	IOxx	I/O-Pin				
96	/OE	Output Enable				
97	/WE	Write Enable				
98	1074	I/O-Pin 74				
99	A0	Address 0				
100	A1	Address 1				
101	A2	Address 2				
102	A3	Address 3				
103	A4	Address 4				
104	A5	Address 5				
105	A6	Address 6				
106	A7	Address 7				
107	A8	Address 8				
108	A9	Address 9				
109	A10	Address 10				
110		Data 0				
111	D1	Data 1				
112	D2	Data 2				
113	D3	Data 3				
114	D4	Data 4				
115	D5	Data 5				
116	D6	Data 6				
117	D7	Data 7				
118	D8	Data 8				
119	D9	Data 9				
120	D10	Data 10				
121	D11	Data 11				
122	D12	Data 12				
123	D13	Data 13				
124	D14	Data 14				
125	D15	Data 15				
126	1075	I/O-Pin 75				
127	CS0	Chip Select 1				
128	ETH-ACT	Ethernet Activity				
129	STA1	Status 1				
130	STA2	Status 2				
131	LOUT	Audio Left Out				
132	ROUT	Audio Right Out				
133	LIN	Audio Left In				
134	RIN	Audio Right In				
135	MICIN	Microphone In				
136	MICBIAS	Microphone Bias				
137	X+	Touch X+				
138	X-	Touch X-				
139	Y+	Touch Y+				
140	Y-	Touch Y-				
	1		1			

See PicoMODA9 Starter kit documentation for connection examples. See software documentation for configuration of alternative functions.

2.4 Connector J2 LVDS

	J2				
Pin	Signal	Description			
1	VLCD	LCD Voltage 3.3V switched (max. 1.2A)			
2	VLCD	LCD Voltage 3.3V switched (same as on pin 1)			
3	GND	Ground			
4	GND	Ground			
5	TX0-	LVDS Transmit 1 negative			
6	TX0+	LVDS Transmit 1 positive			
7	GND	Ground			
8	TX1-	LVDS Transmit 2 negative			
9	TX1+	LVDS Transmit 2 positive			
10	GND	Ground			
11	TX2-	LVDS Transmit 3 negative			
12	TX2+	LVDS Transmit 3 positive			
13	GND	Ground			
14	CLK-	LVDS Clock negative			
15	CLK+	LVDS Clock positive			
16	GND	Ground			
17	TX3-/NC	LVDS Transmit 3 negative (only with 24bit version)			
18	TX3+/NC	LVDS Transmit 3 positive (only with 24bit version)			
19	GND	Ground			
20	GND	Ground			
21	GND	Ground			
22	GND	Ground			
23	VLCD	LCD Voltage 3.3V switched (same as on pin 1)			
24	VCFL_ON	Backlight On Signal 3.3V active high			
25	BL_PWM	Backlight Dimming PWM Signal 3.3V			

Connector on the PicoMODA9 is a JAE FI-S25P-HFE. Mating connector is JAE FI-S25S. This connector is optional mounted only in mounting versions with LVDS.

2.5 microSD connector

The on board microSD connector can be used on same time as the SD interface on J1. There is no sharing with any signal of the connector J1. There is no hot plug detection for this connector, so the software can't detect a card insert after switching on the board.

Figure 1: microSD connector

3 Interface and Signal description

3.1 Ethernet connection

LAN TX+/- and RX+/- are 100 \pm 20% Ohm differential pairs to a 1:1/1:1 transformer. We recommend a connector with integrated transformer in short distance (less than 4 inch = 100 mm) to the module connector. The RX pair should have a 0.2 inch min. distance to TX pair to avoid crosstalk. The intra pair mismatch of each differential pair should be <50 mil (1.27mm). Please also refer our "Ethernet Routing Guidelines" on our web download area and refer the comments at our forum.

The LED signals are low active to drive a 3.3V powered LED with 5mA directly. If Ethernet is not used please leave signals unconnected.

3.2 Serial port

Serial ports are provided with 3.3V TTL signals. These signals are not 5V compliant. Please use a transceiver with 3.3V power supply.

If you don't need the serial port this pins can be used optional as GPIOs.

3.3 USB Host

The 90 Ohm differential pair of USB signals doesn't need any termination. For external ports EMV protection is required nearby the USB connector.

With the USB_PWR signal you can switch on the USB power on your current limiting IC. From the <u>usb.org</u> webpage you can download "<u>High Speed USB Platform Design Guidelines</u>" which provides highly recommended information for a proper working USB design. If the USB port is not used please leave open.

3.4 USB device

The 90 Ohm differential pair of USB signals doesn't need any termination. For external ports ESD and EMV protection is required nearby the USB connector.

The USB_CNX signal is for detecting a connection to a host. This signal connects directly to the USB 5V power (4.75 - 5.25V). A buffer can be added to prevent excessive current flow from the USB connector to the board.

From the <u>usb.org</u> webpage you can download "<u>High Speed USB Platform Design Guidelines</u>" which provide highly recommended information for a proper working USB design. If the USB device port is not used please leave open.

3.5 SPI

The module supports a HS SPI (Serial Peripheral Interface) with a chip select. Signals are 3.3V compliant.

3.6 I2C

The module supports an I2C interface. Signals are 3.3V compliant and don't have pull-ups on module. Please add 2.2 kOhm pull-ups to 3.3V on baseboard. 5V devices on baseboard need a level shifter.

I2C for camera and HDMI is soft I2C on GPIO, see starter kit schematics for connection examples.

3.7 CAN

The module provides the CAN TX and CAN RX signals with .3.3V TTL level The RX signal has an internal pull-up and can be left unconnected when not used. A 3.3V transceiver like SN65HVD230 is needed to connect to the CAN bus.

3.8 SD card

The interface is supporting a SD card channel. For specification and licensing please refer the website of the SD Association <u>http://www.sdcard.org</u>. Pull-ups are integrated on the module. Signals are 3.3V compliant. Unused signals should be left unconnected. Signals can be optional used as GPIO.

3.9 Touch

The integrated resistive touch controller will support 4 wire analog resistive touch panels without any additional circuit.

3.10 Audio I/F

The onboard sound codec supports an analog stereo input and an analog stereo output with 1 V_{RMS} signal level. These signals need serial capacitors.

3.1110/ IRQ

Multiple general purpose pins with 3.3V logic signal level.

3.12/PONRES

Reset input. Drive with open drain or open collector 3.3V compliant signal. We recommend to pull low this pin with the powergood signal from power supply or using a voltage supervisor. For proper function this signal must be connected.

3.13Address/Data-Bus

The PicoMODA9 module does provide an address/data bus to connect ICs for additional functions. Bus supports 3.3V TTL level. This interface can be used to implement a NetDCU compatible FS-Bus (8bit with data/address select)

	1
Address	A100
Data	D150
Chip select	/CS0
Output Enable	/OE
Write Enable	/WE

4 Dimensions

Board thickness:	1.6 mm
Height of parts on top side:	3.0 mm
Height of parts on bottom side	
(without connectors):	2.0 mm
Pin pitch of connector:	0.8 mm
Mounting hole diameter:	2.8 mm

Figure 2: Bottom view – dimension

All values can have tolerances of ±0.5mm.

To avoid EMC and ripple pickup the mounting holes are isolated and not connected to any voltage.

5 **Technical Data**

Power Supply:	+3.3V DC / ±5%
Power supply VBAT	2.0 3.6 V

power consumption typical current consumption BATT: 1.2 µA maximum power consumption BATT: 10 µA @25°C

Thermal design power (summary all chips) With Solo CPU 5.5 Watt @25°C With Duallight CPU, eMMC 7 Watt @25°C

Power consumption of connected devices like display, USB devices, SD card, miniPCIe card has to be added for power calculation.

max. 45 I/O lines

Inputs/Outputs: _

Touch-Screen	•
Interfaces:	

	(shared with dedicated interfaces)
Touch-Screen:	4 wire touch input, resistive
Interfaces:	1x Ethernet 10/100Mbit
	3x Serial with 3,3V-level (1x with RTS/CTS) or 4x
	Serial without RTS/CTS
	1x USB2.0 Device or USB2.0Host (high speed
	480Mbit/s)
	1x USB2.0 Host (high speed 480Mbit/s)
	1x CAN2.0
	1x I2C
	1x SPI
	1x Audio (Line in, Line out, Micro in)
	1x microSD slot onboard
	1x SD-Card (external)
	1x Address/Data-Bus interface
TFT LCD-interface:	1x 18bit RGB
	1x 18/24bit LVDS
RAM:	256 MByte DDR3-RAM (optional 1GByte)
Flash:	128 MByte Flash (optional 1GByte)
CPU:	Freescale i.MX6 Solo or DualLite
Operating Temperature:	0°C +85°C
Dimensions (I x w x h):	80 x 50 x 4 mm without connector
	80 x 50 x 8 mm with connector
Weight:	20 gr.

5.1 Thermal Specification

	Min	Тур	Max	Unit
Operating temperature	0		+70 ¹	°C
Operating temperature ("I") ²	-20		+85 ¹	°C
Junction temperature i.MX6	-20		+105	°C
Junction temperature i.MX6 ("I") ²	-20		+105	°C
Junction to Top of i.MX6 (Psi-JT) ³		2		°C/W

¹ Depending on cooling solution. See also: <u>Operating conditions</u>, <u>Power Consumption and</u> <u>cooling</u>

³ Temperature difference between package top and the junction temperature per JEDEC JESD51-2.

5.2 DC electrical characteristics for 3.3V IO pins

VDD= 3.3V +/- 5%						
Parameter	Description	Condition	Min	Max	Unit	
Vih	High Level Input Voltage		0.7*VDD	VDD+0.3	V	
Vil	Low Level Input Voltage		-0.3	0.3*VDD	V	
Voh	High Level Output Voltage	loh=-100µA	VDD-0.2		V	
Vol	Low Level Output Voltage	loh=100µA		0.2	V	
lo	Output current	VDD=3.3V		2.6	mA	

5.3 Operating conditions, Power consumption and cooling

The operating humidity range is 10 - 90% r. H. non condensing.

Depend you product version you will have different temperature range and power consumption of the module.

The operating temperature can be measured on the mounting holes or the golden cooling plate on top of the module and **shouldn't exceed the maximum operating temperature of the board** (85°C for the most of our armStoneA9r2 boards).

The maximum power consumption of the board could be 7 Watt. This value is with 100% working of 4 cores and full working 3D engines. Calculating with this scenario does need an expensive cooling.

Depend your application and your worst case scenario the maximum power consumption is much lower. This will save money on your cooling solution. We recommend to measure this with your application. We see values between max. 3 and 4,5 Watt on different custom applications.

Because the different environments for air temperature, airflow, thermal radiation, power consumption of the board on your application and the power consumption of other components like power supply and LCD inside the system you have to calculate a working cooling solution for the board. Just cooling the CPU with 70-90% of the power consumption of the entire board is the best way to cool the board.

To calculate your cooling we recommend this helpful literature

- AN4579 from <u>freescale.com</u>
- <u>fischerelektronik.de/web_fisch...eKataloge/Heatsinks/#/18/</u>
- http://www.eetimes.com/document.asp?doc_id=1276748

² Optional

• <u>http://www.eetimes.com/document.asp?doc_id=1276750</u>

6 Storage conditions

Maximum storage on room temperature with non condensing humidity: 6 months Maximum storage on controlled conditions 25 ± 5 °C, max. 60% humidity: 12 months For longer storage we recommend vacuum dry packs.

7 Appendix

Important Notice

The information in this publication has been carefully checked and is believed to be entirely accurate at the time of publication. F&S Elektronik Systeme assumes no responsibility, however, for possible errors or omissions, or for any consequences resulting from the use of the information contained in this documentation.

F&S Elektronik Systeme reserves the right to make changes in its products or product specifications or product documentation with the intent to improve function or design at any time and without notice and is not required to update this documentation to reflect such changes.

F&S Elektronik Systeme makes no warranty or guarantee regarding the suitability of its products for any particular purpose, nor does F&S Elektronik Systeme assume any liability arising out of the documentation or use of any product and specifically disclaims any and all liability, including without limitation any consequential or incidental damages.

Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

Products are not designed, intended, or authorized for use as components in systems intended for applications intended to support or sustain life, or for any other application in which the failure of the product from F&S Elektronik Systeme could create a situation where personal injury or death may occur. Should the Buyer purchase or use a F&S Elektronik Systeme product for any such unintended or unauthorized application, the Buyer shall indemnify and hold F&S Elektronik Systeme and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that F&S Elektronik Systeme was negligent regarding the design or manufacture of said product.

Specifications are subject to change without notice.

Warranty Terms

Hardware Warranties

F&S guarantees hardware products against defects in workmanship and material for a period of one (1) year from the date of shipment. Your sole remedy and F&S's sole liability shall be for F&S, at its sole discretion, to either repair or replace the defective hardware product at no charge or to refund the purchase price. Shipment costs in both directions are the responsibility of the customer. This warranty is void if the hardware product has been altered or damaged by accident, misuse or abuse.

Software Warranties

Software is provided "AS IS". F&S makes no warranties, either express or implied, with regard to the software object code or software source code either or with respect to any third party materials or intellectual property obtained from third parties. F&S makes no warranty that the software is useable or fit for any particular purpose. This warranty replaces all other warranties written or unwritten. F&S expressly disclaims any such warranties. In no case shall F&S be liable for any consequential damages.

Disclaimer of Warranty

THIS WARRANTY IS MADE IN PLACE OF ANY OTHER WARRANTY, WHETHER EXPRESSED, OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A SPECIFIC PURPOSE, NON-INFRINGEMENT OR THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION, EXCEPT THE WARRANTY EXPRESSLY STATED HEREIN. THE REMEDIES SET FORTH HEREIN SHALL BE THE SOLE AND EXCLUSIVE REMEDIES OF ANY PURCHASER WITH RESPECT TO ANY DEFECTIVE PRODUCT.

Limitation on Liability

UNDER NO CIRCUMSTANCES SHALL F&S BE LIABLE FOR ANY LOSS, DAMAGE OR EXPENSE SUFFERED OR INCURRED WITH RESPECT TO ANY DEFECTIVE PRODUCT. IN NO EVENT SHALL F&S BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES THAT YOU MAY SUFFER DIRECTLY OR INDIRECTLY FROM USE OF ANY PRODUCT. BY ORDERING THE PRODUCT, THE CUSTOMER APPROVES THAT THE F&S PRODUCT, HARDWARE AND SOFTWARE, WAS THOROUGHLY TESTED AND HAS MET THE CUSTOMER'S REQUIREMETS AND SPECIFICATIONS

Figures

Figure 1: microSD connector	10
Figure 2: Bottom view – dimension	14

