# **Hardware Documentation**

ADP-MIPI2DVI1 for HW Revision 1.00



Version 001 (2021-04-30)



© F&S Elektronik Systeme GmbH Untere Waldplätze 23 D-70569 Stuttgart Phone: +49(0)711-123722-0 Fax: +49(0)711-123722-99

## **About This Document**

This document describes how to use the ADP-MIPI2DVI1 adapter board with mechanical and electrical information. The latest version of this document can be found at:

http://www.fs-net.de.

#### **ESD** Requirements



All F&S hardware products are ESD (electrostatic sensitive devices). All products are handled and packaged according to ESD guidelines. Please do not handle or store ESD-sensitive material in ESD-unsafe environments. Negligent handling will harm the product and warranty claims become void.

### History

| Date                                                       |     | V   | Platform | A,M,R | Chapter | Description     | Au |
|------------------------------------------------------------|-----|-----|----------|-------|---------|-----------------|----|
| 29.04.20                                                   | )21 | 001 | All      |       | -       | Initial Version | MD |
|                                                            |     |     |          |       |         |                 |    |
|                                                            |     |     |          |       |         |                 |    |
|                                                            |     |     |          |       |         |                 |    |
| V Version<br>A, M, R Added, Modified, Removed<br>Au Author |     |     |          |       |         |                 |    |

## **Table of Contents**

| Abo  | out This Document          | 2  |
|------|----------------------------|----|
| ES   | D Requirements             | 2  |
| Hist | tory                       | 2  |
| Tab  | ble of Contents            | 3  |
| 1    | Physical Characteristics   | 4  |
| 2    | Connector Pin Layouts      | 5  |
| 3    | LEDs                       | 9  |
| 4    | Electrical Characteristics | 9  |
| 5    | ESD and EMI Implementation | 10 |
| 6    | Second source rules        | 10 |
| 7    | Storage conditions         | 10 |
| 8    | ROHS and REACH statement   | 10 |
| 9    | Packaging                  | 11 |
| 10   | Matrix Code Sticker        | 11 |
| 11   | Appendix                   | 12 |
|      | Important Notice           | 12 |
|      | Warranty Terms             | 13 |
| 12   | Content                    | 14 |



## **1** Physical Characteristics

ADP-MIPI2DVI1 is a passive shield adapter which is compatible with PicoCoreMX8MP baseboard that converts MIPI-DSI input connector into DVI output connector.



Figure 1: ADP-MIPI2DVI1 Adapter Board

| Ref<br>• | Description             | I/O | No. of Pins | Connector Type                |
|----------|-------------------------|-----|-------------|-------------------------------|
| J1       | MIPI-DSI Connector      | I   | 30          | FI-X30SSLA-HF-R2500           |
| J2       | DVI Connector           | 0   | 19          | eiSos 685 119 134 923 (Würth) |
| J3       | Feature Connector       | I/O | 50          | Pin Header (2.54mm)           |
|          | Mating Connector for J1 | -   | 30          | FI-X30H & FI-X30HL            |

Table 1: Connectors List and Types



## 2 Connector Pin Layouts

| J1: MIPI Connector - Input |             |     |         |                                     |  |  |
|----------------------------|-------------|-----|---------|-------------------------------------|--|--|
| Pin                        | Signal Name | I/O | Voltage | Description                         |  |  |
| 1                          | N.C.        | Х   | Х       | Not Connected                       |  |  |
| 2                          | N.C.        | Х   | Х       | Not Connected                       |  |  |
| 3                          | N.C.        | Х   | Х       | Not Connected                       |  |  |
| 4                          | N.C.        | Х   | Х       | Not Connected                       |  |  |
| 5                          | N.C.        | Х   | Х       | Not Connected                       |  |  |
| 6                          | N.C.        | Х   | Х       | Not Connected                       |  |  |
| 7                          |             | ·   | GND     |                                     |  |  |
| 8                          | N.C.        | Х   | Х       | Not Connected                       |  |  |
| 9                          | N.C.        | Х   | Х       | Not Connected                       |  |  |
| 10                         | N.C.        | Х   | Х       | Not Connected                       |  |  |
| 11                         | N.C.        | Х   | Х       | Not Connected                       |  |  |
| 12                         | HDMI_TXD0_N | I   | 1.8V    | DVI TX Data0-                       |  |  |
| 13                         | HDMI_TXD0_P | I   | 1.8V    | DVI TX Data0+                       |  |  |
| 14                         |             |     | GND     |                                     |  |  |
| 15                         | HDMI_TXD1_N | I   | 1.8V    | DVI TX Data1-                       |  |  |
| 16                         | HDMI_TXD1_P | Ι   | 1.8V    | DVI TX Data1+                       |  |  |
| 17                         |             |     | GND     |                                     |  |  |
| 18                         | HDMI_TXD2_N | Ι   | 1.8V    | DVI TX Data2-                       |  |  |
| 19                         | HDMI_TXD2_P | I   | 1.8V    | DVI TX Data2+                       |  |  |
| 20                         | HDMI_TXDC_N | I   | 1.8V    | DVI TX Clock-                       |  |  |
| 21                         | HDMI_TXDC_P | I   | 1.8V    | DVI TX Clock+                       |  |  |
| 22                         | EARC_N_HPD  | 0   | 1.8V    | EARC_N / Hot Plug Detect            |  |  |
| 23                         | EARC_P_UTIL | I   | 1.8V    | EARC_P / Utility                    |  |  |
| 24                         |             |     | GND     |                                     |  |  |
| 25                         | I2C_SDA     | I/O | 3.3V    | I2C Touch-Control Serial Data       |  |  |
| 26                         | I2C_IRQn    | 0   | 3.3V    | I2C Touch-Control Interrupt Request |  |  |
| 27                         | I2C_SCL     | I   | 3.3V    | I2C Touch-Control Clock             |  |  |
| 28                         | MIPI_RSTn   | I   | 3.3V    | MIPI Reset Signal                   |  |  |
| 29                         | VLCD        | PWR | 3.3V    | LCD Supply Voltage                  |  |  |
| 30                         | VLCD        | PWR | 3.3V    | LCD Supply Voltage                  |  |  |

Table 2: MIPI Connector Pin Layout



| J2: DVI Connector - Output |                 |     |         |                                  |  |  |
|----------------------------|-----------------|-----|---------|----------------------------------|--|--|
| Pin                        | Signal Name     | I/O | Voltage | Description                      |  |  |
| 1                          | HDMI_CN_TXD2_P  | 0   | 1.8V    | DVI TX Data2+                    |  |  |
| 2                          |                 | 1   | GND     |                                  |  |  |
| 3                          | HDMI_CN_TXD2_N  | 0   | 1.8V    | DVI TX Data2-                    |  |  |
| 4                          | HDMI_CN_TXD1_P  | 0   | 1.8V    | DVI TX Data1+                    |  |  |
| 5                          |                 |     | GND     |                                  |  |  |
| 6                          | HDMI_CN_TXD1_N  | 0   | 1.8V    | DVI TX Data1-                    |  |  |
| 7                          | HDMI_CN_TXD0_P  | 0   | 1.8V    | DVI TX Data0+                    |  |  |
| 8                          | GND             |     |         |                                  |  |  |
| 9                          | HDMI_CN_TXD0_N  | 0   | 1.8V    | DVI TX Data0-                    |  |  |
| 10                         | HDMI_CN_CLK_P   | 0   | 1.8V    | DVI TX Clock+                    |  |  |
| 11                         |                 |     | GND     |                                  |  |  |
| 12                         | HDMI_CN_CLK_N   | 0   | 5.0V    | DVI TX Clock-                    |  |  |
| 13                         | HDMI_CN_CEC     | 0   | 5.0V    | DVI Consumer Electronics Control |  |  |
| 14                         | HDMI_CN_UTIL    | 0   | 5.0V    | DVI Utility                      |  |  |
| 15                         | HDMI_CN_DDC_SCL | 0   | 5.0V    | DVI I2C Serial Clock             |  |  |
| 16                         | HDMI_CN_DDC_SDA | I/O | 5.0V    | DVI I2C Serial Data              |  |  |
| 17                         |                 |     | GND     |                                  |  |  |
| 18                         | +5VS_HDMI       | 0   | 5.0V    | DVI Supply Voltage               |  |  |
| 19                         | HDMI_CN_HPD     | I   | 5.0V    | DVI Hot Plug Detect              |  |  |

Table 3: DVI Connector Pin Layout



| J3:Fe | 3:Feature Connector – Input / Output |     |           |                                  |  |  |  |
|-------|--------------------------------------|-----|-----------|----------------------------------|--|--|--|
| Pin   | Signal Name                          | I/O | Voltage   | Description                      |  |  |  |
| 1     | +3V3                                 | PWR | 3.3V      | 3.3V Supply Voltage              |  |  |  |
| 2     | +5VS                                 | PWR | 5.0V      | 5.0V Supply Voltage              |  |  |  |
| 3     | SPI_B_SCLK                           | 0   | 3.3V      | SPI_B Serial Clock               |  |  |  |
| 4     | SPI_B_SSO                            | 01  | 3.3V      | SPI_B Slave Select               |  |  |  |
| 5     | SPI_B_MISO                           | I/O | 3.3V      | SPI_B Master In-Slave Out        |  |  |  |
| 6     | SPI_B_MOSI                           | I/O | 3.3V      | SPI_B Master Out-Slave In        |  |  |  |
| 7     | I2S_B_TXD0                           | 0   | 1.8V/3.3V | Audio_B TXD0 (I2S)               |  |  |  |
| 8     | GPIO_J1_54                           | I/O | 3.3V      | GPIO                             |  |  |  |
| 9     | I2S_B_RXD0                           | I   | 1.8V/3.3V | Audio_B RXD0 (I2S)               |  |  |  |
| 10    | I2S_B_MCLK                           | 0   | 1.8V/3.3V | Audio_B MCLK (I2S)               |  |  |  |
| 11    |                                      |     | GND       |                                  |  |  |  |
| 12    | I2S_B_TXFS                           | 0   | 1.8V/3.3V | Audio_B TXFS (I2S)               |  |  |  |
| 13    | UART_D_TXD                           | 0   | 3.3V      | UART_D Transmit Data             |  |  |  |
| 14    | I2S_B_TXC                            | 0   | 1.8V/3.3V | Audio_B TXC (I2S)                |  |  |  |
| 15    | UART_D_RXD                           | I   | 3.3V      | UART_D Receive Data              |  |  |  |
| 16    | HDMI_CEC                             | 0   | 3.3V      | DVI Consumer Electronics Control |  |  |  |
| 17    | HDMI_HPD                             | I   | 3.3V      | DVI Hot Plug Detect              |  |  |  |
| 18    | GPIO_J1_52                           | I/O | 3.3V      | GPIO                             |  |  |  |
| 19    | SD_A_DATA4                           | 0   | 1.8V/3.3V | SDIO_A Data4                     |  |  |  |
| 20    | SD_A_DATA5                           | 0   | 1.8V/3.3V | SDIO_A Data5                     |  |  |  |
| 21    | SD_A_DATA6                           | 0   | 1.8V/3.3V | SDIO_A Data6                     |  |  |  |
| 22    | SD_A_DATA7                           | 0   | 1.8V/3.3V | SDIO_A Data7                     |  |  |  |
| 23    | SD_B_DATA3                           | 0   | 1.8V/3.3V | SDIO_B Data3                     |  |  |  |
| 24    | HDMI_DDC_SDA                         | I/O | 3.3V      | DVI DDC I2C Serial Data          |  |  |  |
| 25    | SD_B_DATA2                           | 0   | 1.8V/3.3V | SDIO_B Data2                     |  |  |  |
| 26    | HDMI_DDC_SCL                         | 0   | 3.3V      | DVI DDC I2C Serial Clock         |  |  |  |
| 27    |                                      | 1   | GND       |                                  |  |  |  |
| 28    | SD_B_DATA1                           | 0   | 1.8V/3.3V | SDIO_B Data1                     |  |  |  |
| 29    | SD_B_DATA0                           | 0   | 1.8V/3.3V | SDIO_B Data0                     |  |  |  |
| 30    | SD_B_CLK                             | 0   | 1.8V/3.3V | SDIO_B Clock                     |  |  |  |
| 31    | SD_B_CMD                             | 0   | 1.8V/3.3V | SDIO_B Command                   |  |  |  |
| 32    | SD_B_CD                              | I   | 1.8V/3.3V | SDIO_B Card Detect               |  |  |  |



| 33 | SD_B_WP        | I                          | 1.8V/3.3V | SDIO_B Write Protect     |
|----|----------------|----------------------------|-----------|--------------------------|
| 34 | PWM            | 0                          | 3.3V      | PWM Output               |
| 35 | SD_B_RST       | 0                          | 1.8V/3.3V | SDIO_B Reset             |
| 36 | UART_A_RTS     | 0                          | 3.3V      | UART_A Ready to Send     |
| 37 |                |                            | GND       |                          |
| 38 | UART_A_CTS     | I                          | 3.3V      | UART_A Clear to Send     |
| 39 | +3V3           | PWR                        | 3.3V      | 3.3V Supply Voltage      |
| 40 | +5VS           | PWR                        | 5.0V      | 5.0V Supply Voltage      |
| 41 | AUDIO_A_MIC    | I                          | -         | Audio_A Microphone Input |
| 42 | GND            |                            |           |                          |
| 43 | N.C.           | Х                          | Х         | Not Connected            |
| 44 | AUDIO_A_LIN_R  | I                          | -         | Audio_A Line In Right    |
| 45 | AUDIO_A_LOUT_R | 0                          | -         | Audio_A Line Out Right   |
| 46 | GND            |                            |           |                          |
| 47 | GND            |                            |           |                          |
| 48 | AUDIO_A_LIN_L  | L I - Audio_A Line In Left |           | Audio_A Line In Left     |
|    |                | AUDIO_A_LOUT_L O           |           |                          |
| 49 | AUDIO_A_LOUT_L | 0                          | -         | Audio_A Line Out Left    |

Table 4: Feature Connector Pin Layout



### 3 LEDs

| LED   | Function                                                    |
|-------|-------------------------------------------------------------|
| +3V3  | DVI 3V3 Power LED                                           |
| +5VS  | DVI 5V Power LED                                            |
| FAULT | 5V Over Current Fault LED [LED is ON if $I_{5VS}$ >0.5A]    |
| HPD   | DVI Hot Plug Detect LED [LED is ON if DVI cable is plugged] |

Table 5: Electrical Characteristics

#### **4** Electrical Characteristics

| Signal Name | Description          | Min | Тур. | Max | Unit |
|-------------|----------------------|-----|------|-----|------|
| +5VS        | Input Supply Voltage | 4.5 | 5.0  | 5.5 | V    |
| +3V3        | Input Supply Voltage | 3.0 | 3.3  | 3.6 | V    |
| VLCD        | LCD Supply Voltage   | 3.0 | 3.3  | 3.6 | V    |
| GND         | Ground               | -   | -    | -   | -    |

Table 6: Electrical Characteristics



## 5 ESD and EMI Implementation

The DVI data lanes were filtered via ferrite beads in order to reduce the EMI. We highly recommend using the adapter board with wires as short as possible.

ESD Rating of the chip is  $\pm 2 \text{ kV}$  (HBM). The DVI signals are protected against ESD with TVS diodes which are located nearby the DVI connector.

A helpful guide is available from TI; just search for slva680 at ti.com.

## 6 Second source rules

F&S qualifies their second sources for parts autonomously, as long as this does not touch the technical characteristics of the product. This is necessary to guarantee delivery times and product life. A setup of release samples with released second sources is not possible.

F&S does not use broker components without the consent of the customer.

# 7 Storage conditions

Maximum storage on room temperature with non-condensing humidity: 6 months Maximum storage on controlled conditions  $25 \pm 5$  °C, max. 60% humidity: 12 months For longer storage, we recommend vacuum dry packs.

## 8 ROHS and REACH statement

All F&S designs are created from lead-free components and are completely ROHS compliant.

The products we supply do not contain any substance on the latest candidate list published by the European Chemicals Agency according to Article 59(1,10) of Regulation (EC) 1907/2006 (REACH) in a concentration above 0.1 mass %.

Consequently, the obligations in No. 1 and 2 paragraphs in Annex are not relevant here. Please understand that F&S is not performing any chemical analysis on its products to testify REACH compliance and is therefore not able to fill out any detailed inquiry forms.



## 9 Packaging

All F&S ESD-sensitive products will shipping either in trays or in bags.

### **10 Matrix Code Sticker**

All F&S hardware will ship with a matrix code sticker including the serial number. Enter your serial number here <u>https://www.fs-net.de/en/support/serial-number-info-and-rma/</u> to get information on shipping date and type of board.



Figure 2: Matrix Code Sticker



## 11 Appendix

#### **Important Notice**

The information in this publication has been carefully checked and is believed to be entirely accurate at the time of publication. F&S Elektronik Systeme ("F&S") assumes no responsibility, however, for possible errors or omissions, or for any consequences resulting from the use of the information contained in this documentation.

F&S reserves the right to make changes in its products or product specifications or product documentation with the intent to improve function or design at any time and without notice and is not required to update this documentation to reflect such changes.

F&S makes no warranty or guarantee regarding the suitability of its products for any particular purpose, nor does F&S assume any liability arising out of the documentation or use of any product and specifically disclaims any and all liability, including without limitation any consequential or incidental damages.

Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

Products are not designed, intended, or authorized for use as components in systems intended for applications intended to support or sustain life, or for any other application in which the failure of the product from F&S could create a situation where personal injury or death may occur. Should the Buyer purchase or use a F&S product for any such unintended or unauthorized application, the Buyer shall indemnify and hold F&S and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that F&S was negligent regarding the design or manufacture of said product.

Specifications are subject to change without notice.



#### Warranty Terms

#### **Hardware Warranties**

F&S guarantees hardware products against defects in workmanship and material for a period of one (1) year from the date of shipment. Your sole remedy and F&S's sole liability shall be for F&S, at its sole discretion, to either repair or replace the defective hardware product at no charge or to refund the purchase price. Shipment costs in both directions are the responsibility of the customer. This warranty is void if the hardware product has been altered or damaged by accident, misuse or abuse.

#### **Software Warranties**

Software is provided "AS IS". F&S makes no warranties, either express or implied, with regard to the software object code or software source code either or with respect to any third party materials or intellectual property obtained from third parties. F&S makes no warranty that the software is useable or fit for any particular purpose. This warranty replaces all other warranties written or unwritten. F&S expressly disclaims any such warranties. In no case shall F&S be liable for any consequential damages.

#### **Disclaimer of Warranty**

THIS WARRANTY IS MADE IN PLACE OF ANY OTHER WARRANTY, WHETHER EXPRESSED, OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A SPECIFIC PURPOSE, NON-INFRINGEMENT OR THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION, EXCEPT THE WARRANTY EXPRESSLY STATED HEREIN. THE REMEDIES SET FORTH HEREIN SHALL BE THE SOLE AND EXCLUSIVE REMEDIES OF ANY PURCHASER WITH RESPECT TO ANY DEFECTIVE PRODUCT.

#### Limitation on Liability

UNDER NO CIRCUMSTANCES SHALL F&S BE LIABLE FOR ANY LOSS, DAMAGE OR EXPENSE SUFFERED OR INCURRED WITH RESPECT TO ANY DEFECTIVE PRODUCT. IN NO EVENT SHALL F&S BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES THAT YOU MAY SUFFER DIRECTLY OR INDIRECTLY FROM USE OF ANY PRODUCT. BY ORDERING THE PRODUCT, THE CUSTOMER APPROVES THAT THE F&S PRODUCT, HARDWARE AND SOFTWARE, WAS THOROUGHLY TESTED AND HAS MET THE CUSTOMER'S REQUIREMETS AND SPECIFICATIONS



## 12 Content

| Table 1: Connectors List and Types    | 4  |
|---------------------------------------|----|
| Table 2: MIPI Connector Pin Layout    | 5  |
| Table 3: DVI Connector Pin Lavout     | 6  |
| Table 4: Feature Connector Pin Layout | 8  |
| Table 5: Electrical Characteristics   | 9  |
| Table 6: Electrical Characteristics   | 9  |
|                                       |    |
| Figure 1: ADP-MIPI2DVI1 Adapter Board | 4  |
| Figure 2: Matrix Code Sticker         | 11 |
|                                       |    |

