Software Documentation

Windows CE CAN Interface
Software Interface for .NET

Version 1.03
2003-12-07

© F&S Elektronik Systeme GmbH
° Untere Waldplatze 23
Elektronik D-70569 Sutgan
Fon: +49(0)711-123722-0

Systeme

Fax: +49(0)711 — 123722-99

History

Date V Platform A,M,R | Chapter Description Au
2014-12-08 1.03 M * Changed to new Company ClI JG
V Version

AM,R Added, Modified, Removed

Au Author

About this document

This document describes how to handle the CAN Interface under Windows CE.

Table of Contents

History 1
About this document 1
Table of Contents 2
1 Introduction 4
2 Installation 5
2.1 Installing the devViCe AriVET ..o 5
2.2 Installing the .NET library CanPort.dll.............cooee i, 5
3 The CanPort class 6
3.1 CanPort() (CONSIIUCTION)oeiiiiiiei e e e e e e e e aanees 7
3.2 REAU() . et eeeeeet ettt 8
3.3 WWHIEE() oo 10
3.4 SetCOMMTIMEOULS() ..uuieeeii e e e e s e e e e et e e e e e e e e e ret e e e eeeeeannne 14
3.5 GetCOMMTIMEOULS() ..uuue e e e e e e e et e e e e e e e e et ar e e e e e eeeannne 14
3.6 SELCOMMMEASK() +.rvttteettiitttttiieeeee ettt nenennee 15
3.7 GELCOMIMMASK() .ttt esennennnes 15
3.8 WaitCOMMEVENT() .. .o e e e e e 16
3.9 WriteAcceptanCeFilter()ooe e 16
3.10 ReadAcceptanCeFilter()........ouuiiiiiiiiiiiiiiiiiiiiiieee e 17
3.11 SEtBAUAIAtE()....cieeeiiiiiei i e e et e e e e e e e e e e e e e r e aaaaaarne 17
3.12 GetBaUArate()cevuriiiie e ee e e e e e aaaeaanae 18
3.13 SetBaudrateBYINAEX()uuuuururuuerurniuiiitiieneuiuaeeeeaeeeeneeeeeeneeeeeeeneeeeeeeeeeaeeeeeenee 18
3.14 GetBaudrateByINAEX()......ccciiveriiiiiie e e e aaaan 19
3.15 IIE() oo 19
3.16 SEICANMOUE() .ttt 20
3.17 SELCOMMEAN() -+ttt 20
3.18 WrteTransSmitData()cuvvvuiiiiie e e 21
3.19 REAJEVENIDALA() ...vvveiviiiiiiiiiiiiiiiieee ettt 24
3.20 REAATIME() .eeiiieiiiiiiieie ettt 24
3.21 SetDefaultFrameFormat()...........ceeeii e e 25
3.22 TESIDEVICE() .. iiieeiiiiiii et e e e e e e e e e e e e et e aaaeaaane 25
3.23 REAAPTOPEITIES() . reeeeiieiieiiiiiiii ittt 26
3.24 REAAREGISIEI() .. e eiiieeiiieee et e e e e e e e 26
3.25 AT 1S =T 0 1 (= £ PR 27
3.26 ReadReQIStEIRM()ceviiiiiiiiiiiiiiiiieeeeeeeeeee e 27
3.27 WHtEREQISIEIRM()....co oo 28
3.28 ENUM CANACCESS ...ttt e et e e et e e e et e e e e et e e e e eta e eeeeeans 28
3.29 enum CanTranSMItFOIMAL..........ccooeiiiiiiiiiee e e e e e e e e eaaeees 28
3.30 eNUM CANEVENTFIAGSuuuiiiiiiiiiiiiii e 29
3.31 enum CanCoMMEANGooiiiiiiii e e e e e e eeeae e e e e e e eaeeee 29
3.32 €NUM CANMOUE.o e e e e et e e e e eeeeeeenes 30
3.33 enUM CanNChIPSEIFIAQSuuuuiiiiiiiiiiiiiiiii e 30
3.34 ENUIM APIEITON oottt e e e e ea e e e e 30
3.35 STrUCT COMMTIMEOULS: ...t e e e e e e e e e e e e e eeeeeennes 31
3.36 Struct CanACCEPLANCERIITET 32
3.37 S (0 (o A OF= U I I o = USSP 35
3.38 struct CanTranSMItDALAuuiiiieeeii e e e e e e e e eaeeees 35
3.39 SIUCE CANEVENT. ... et eaeans 35
3.40 SITUCE CANPIOPEIIES. ... e et e e e et eeaaaeaannes 36

5

Software Documentation Windows CE CAN Interface Software Interface for NET | 2 of 49

4 The CanPortException class 37

4.1 CanPortException() (CONSIIUCHION)uuurrriiiiiiiiiiiiiiiiiiiieeeineieneeeeeeeeeeeeeeenenees 38
5 Sample Program CanWrite 40
5.1 Y010 LTI O o o R 41
6 Sample Program CanRead 43
6.1 Y010 Lot 0o o PR 44
7 Appendix 47
IMPOITANT NOTICE ... 47
RTA L T = L1V =T 1 PP 47

G |‘ Software Documentation Windows CE CAN Interface Software Interface for NET | 3 of 49

1 Introduction

Some NetDCU boards offer on-board CAN ports for direct integration of the NetDCU into a
CAN network. Other NetDCUs can use the extension board NDCU-ADP/CANZ that provides
two CAN ports.

The .NET interface to this CANINTF driver is done by a C# class CanPort, wrapping
around the driver interface and making the native Win32 functions available to the .NET
languages like C#.NET and VisualBasic.NET. The class allows the usage of managed
data types and does all conversions required to call the driver without the user having to
bother about the details.

This document describes all functions and data types provided by the CanPort class. In
addition we introduce a special exception class CanPortException, allowing easy error
handling in combination with the CanPort class. At the end we have included two sample
programs CanWrite and CanRead, showing the usage of the CanPort class.

Remark
In the remaining document we’'ll use the term “NetDCU” as generic reference to all our
Windows CE boards. This should also include PicoMOD boards where appropriate.

G |‘ Software Documentation Windows CE CAN Interface Software Interface for NET | 4 of 49

2 Installation

2.1 Installing the device driver

For using the CAN ports, it is required to install the CANINTF driver. This is documented in
“WINCE-CAN-Interface, Software Documentation, NetDCU-ADP/CANZ2”. This is also
required when using the CAN port with the .NET environment.

2.2 Installing the .NET library CanPort.dll

To use the CanPort.dll library for .NET, you have to copy it to your PC, for example to

your Visual Studio project directory, and add a reference to it in your project. This can be

done in two ways:

1. In the solution explorer, right click on the “References” entry and select “Add
Reference...”

2. In menu “Project” select “Add Reference...”

In both cases you will be presented with a dialog having several tabs. Click on the tab

“Browse” and search for the CanPort.dl11 in your project directory. After clicking OK, entry

“CanPort” will appear in the References section of the Solution Explorer.

If the canPort class is not automatically recognized in the editor immediately, close and re-

open your solution. Now the new objects should be supported by the editor.

G |‘ Software Documentation Windows CE CAN Interface Software Interface for NET | 5 of 49

3 The CanPort class

The canPort class defines all functions needed for accessing the CAN port, including some
data types, constants and enumerations. The class is embedded in the FS.NetDCU hame-
space, so the fully qualified nhame is FS.NetDCU.CanPort.

First we will describe the member functions, then follow the data types used together with
them in the second part of this chapter.

Error Handling

As with most low-level Windows drivers written in C, it is common for a function to return an
error or success value as the direct return value and return any requested data in data
structures passed by reference as parameters. Contrary to this, modern languages like C#
usually use asynchronous exceptions to report failure and therefore can use the return value
directly to transfer the requested data, usually as objects.

With the canPort class, we let you choose what behaviour you want. By default any error in
a CanbPort function will throw a CanPortException. However you can change this
behaviour by calling HandleErrorsViaReturn () immediately after constructing the
CanPort object. This switches this instance to the C style convention and then each
function returns O for success and an error value different from O for failure.

The two sample programs at the end of this document show the usage of the two different
methods. CanWrite uses the exception technique, CanRead the return value method.

G |‘ Software Documentation Windows CE CAN Interface Software Interface for NET | 6 of 49

3.1 CanPort() (Construction)

Signature:
CanPort (string FileName, CanAccess access)

Parameters:

FileName Name of the device (CID1:, CID2:)

access Access type: Device query access, read access, write access, or read-write
access.

Description:

Open the device file. Throw a CanPortException if it fails. The device file is automatically
closed by the destructor when the object is destroyed.

The CAN ports have the device nhames CID<n>: where <n> is the number of the port,
usually 1 or 2. The access defines whether you want to transmit or receive messages.

For the description of CanAccess see page 28.

Example:
try
{
// Create a CanPort object
CanPort pCAN = new CanPort ("CID1:", CanPort.CanAccess.READ) ;
}
catch (CanPortException e)
{
// Handle error according to e.Reason

}

G |‘ Software Documentation Windows CE CAN Interface Software Interface for NET | 7 of 49

3.2 Read()

Signature:
int Read(out string result)

Parameters:
result String that was read

Return:
0 Success

1=0 Error from GetLastWin32Error ()

Description:

Read an event entry from the device file. If no event is currently in the queue, wait until an
event arrives or untii a timeout occurs. You can set the timeout values with
SetCommTimeouts ().

When using this function, the binary data of the CAN port events and messages is converted
to a textual representation that can easily be written to log files or printed to the display. In
fact there are two conversions involved: first a binary to ASCII text conversion within the
CAN driver, and then an ASCII to Unicode conversion within the Read () wrapper function.

It is possible to parse and analyse these text contents to detect the type of event and react
accordingly, but this can more easily achieved by using ReadEventData () instead. This
also avoids the overhead of the text conversions.

Depending on the event that occurred on the CAN bus, the output of Read () can have one
of the following appearances:
Event RECEIVED:

received\t<time_high>:<time_low>\t<id>\t<rtr>\t<dlc>\r\n
\t<msg0>\t<msg1>...\t<lost>\n

Event TRANSMITTED:

transmitted\t<time_high>:<time_low>\t<id>\t<rtr>\t<dlc>\r\n
\t<msg0>\t<msgl>..\n

Event BUS_ERROR:

bus error\t<time_high>:<time_low>\n

Event WARNING:

warning\t<time_high>:<time_low>\n

Event ARBITRATION_LOST:

arbitration lost\t<time_high>:<time_low>\n

Event OVERRUN:

overrun\t<time_high>:<time_low>\n

Event LEAVING_STANDBY:

leaving standby\t<time_high>:<time_low>\n

Event ENTERING_STANDBY:

entering standby\t<time_high>:<time_low>\n

Event PASSIVE:

passive\t<time_high>:<time_low>\n

G |‘ Software Documentation Windows CE CAN Interface Software Interface for NET | 8 of 49

Event DEVICE_CHANGED:

device changed\t<time_high>:<time_low>\n

Any other event:

unknown event\t<time_high>:<time_low>\n

Here the parameters have the following meaning:
<time high> Highword of the time when the event occurred (32 bit as
decimal value)

<time low> Lowword of the time when the event occurred (32 bit as decimal value)

<id> ID of the message, usually identifying the target device or message type
(32 bit value as 8 hex digits)

<rtr> Remote transmission request (decimal value)
0: CAN message with data
1: Request data from receiver

<dlec> Data length code (0..8 as decimal value)

<msg0> First message byte (8 Bit as 2 hex digits)

<msgl> ... Remaining message bytes (each 2 hex digits); there are exactly <d1c> bytes
in total

<lost> Number of lost messages since last Read () (32 bit as decimal value)

\t Tabulator character <TAB> (=0x09)

\r Carriage return character <CR> (=0x0D)

\n Line feed character <LF> (=0x0A)

Lost messages may occur if the messages arrive faster than they are read and the internal
buffer does not suffice.

Example:

received 0:4018194 000003d7 0 6
18 29 3A 3B 4C 5D O

This shows that a message was received at CAN bus time 0:4018194 with ID 0x000003d7,

with remote transmission request 0, and data length code 8, resulting in the eight message

bytes 0x18, 0x29, 0x3A, 0x3B, 0x4C and 0x5D. There were no messages lost.

G |‘ Software Documentation Windows CE CAN Interface Software Interface for NET | 9 of 49

3.3 Write()

Signature 1:
int Write(string tosend)

Parameters:

tosend Message to send

Return:

0 Success

=0 Error from GetLastWin32Error ()

Description:

Write a message to the device file with the following syntax:

<id> <rtr> <dlc> <msg0> <msgl> ... \n

Every entry is a hex number:

<id> ID of the message, usually identifying the target device or message type

<rtr> Remote transmission request
0: CAN message with data
1: Request data from receiver

<dlc> Data length code, i.e. number of message values following (0..8)

<msg0> The first message byte value (0..FF)

<msgl> The second message byte value (0..FF).
Up to eight message bytes can be given.

\n Line feed character <LF> (=0x0A)

Please note that Write () is text based. This is convenient in many ways, but this also
means the CAN bus driver must interpret the text and convert the values back to binary data.
Moreover, the .NET environment uses Unicode characters, but the driver expects ASCII
characters. So the write () wrapper function must convert Unicode to ASCII first before
calling the CAN driver.

You can avoid this overhead by using WriteTransmitData () instead, which provides a
binary interface to the CAN interface driver.

Example:

Send three bytes 0x13, 0xB4, OxCF with message ID Ox1A7 and remote transmission
request 0.

CanPort pCAN = new CanPort(...);

pCAN.Write("0x1A7 0 3 13 B4 CF\n");

Software Documentation Windows CE CAN Interface Software Interface for NET | 10 of 49

/|
/]

Signature 2:
int Write(uint id, byte dlc, byte[] msg)

Parameters:

id Message ID

dlc Data length code (0..8)

msg Array containing the message bytes; it must have at least d1c entries!
Return:

0 Success

1=0 Error from GetLastWin32Error ()

Description:

Convert the parameters to a message string and send it to the CAN port device. rtr is
implicitly taken as 0. Here the byte array can be larger than the message, but only the first
dlc bytes are actually transmitted.

Please note that Wwrite () always uses the text interface to talk to the CAN driver (see page
10). If you want a binary interface, consider using WriteTransmitData () instead.

Example:
Sending 3 bytes 0x13, 0xB4, OxCF with message ID 0x1A7.

CanPort pCAN = new CanPort(...);
bytel] msg = new byte[6] {0x13, 0xB4, 0xCF, 0, 0, 0};
pCAN.Write (0x1A7, 3, msqg);

Software Documentation Windows CE CAN Interface Software Interface for NET | 11 of 49

/|
/]

Signature 3:
int Write(uint id, byte[] msg)

Parameters:

id Message ID

msg Array containing the message bytes; it must be 0 to 8 bytes of length
Return:

0 Success

=0 Error from GetLastWin32Error ()

Description:

Convert the parameters to a message string and send it to the CAN port device. The
message length is taken from the array length, rtr is implicitly taken as O.

Please note that Wwrite () always uses the text interface to talk to the CAN driver (see page
10). If you want a binary interface, consider using WriteTransmitData () instead.

Example:

Send three bytes 0x13, 0xB4, OXCF with message ID 0x1A7.

CanPort pCAN = new CanPort(...);

bytel] msg = new byte[] {0x13, 0xB4, OxCF};
PCAN.Write (0x1A7, msqg);

Software Documentation Windows CE CAN Interface Software Interface for NET | 12 of 49

/|
/]

Signature 4:
int Write (uint id)

Parameters:

id Message ID

Return:

0 Success

1=0 Error from GetLastWin32Error ()
Description:

Send a message that requests an answer from some target device. Please note that this
signature implies an empty message (dl1c=0) and sets the remote transmission request
(rtr=1).

Please note that Wwrite () always uses the text interface to talk to the CAN driver (see page
10). If you want a binary interface, consider using WriteTransmitData () instead.

Example:

Send a message with ID code 0x1B9 that requests some information from a target device
handling this ID code.

CanPort pCAN = new CanPort(...);

PCAN.Write (0x1B9) ;

Software Documentation Windows CE CAN Interface Software Interface for NET | 13 of 49

/|
/]

3.4 SetCommTimeouts()

Signature:
int SetCommTimeouts (ref CommTimeouts timeouts)

Parameters:
timeouts Timeout values to be used on CAN bus

Return:
0 Success

1=0 Error from GetLastWin32Error ()

Description:

Set the timeout values for this CAN bus device. This is similar to setting timeout values for a
serial line.

For a description of CommTimeouts see page 31.

3.5 GetCommTimeouts()

Signature:
int GetCommTimeouts (out CommTimeouts timeouts)

Parameters:
timeouts Current timeout values

Return:

0 Success

1=0 Error from GetLastWin32Error ()
Description:

Get the current timeout values of this CAN bus device.
For a description of CommTimeouts see page 31.

Software Documentation Windows CE CAN Interface Software Interface for NET | 14 of 49

/|
/]

3.6 SetCommMask()

Signature:
int SetCommMask (CanEventFlags mask)

Parameters:
mask Mask of reported events

Return:
0 Success

1=0 Error from GetLastWin32Error ()

Description:
Configure which CAN bus events are reported and which are ignored.
For a description of CanEventFlags see page 29.

Example:

CanPort pCAN = new CanPort(...);

pCAN. SetCommMask (CanPort.CanEventFlags.CANBUS_ TRANSFERS
| CanPort.CanEventFlags.BUS_ ERROR
| CanPort.CanEventFlags.WARNING) ;

3.7 GetCommMask()

Signature:
int GetCommMask (out CanEventFlags mask)

Parameters:
mask Current mask of reported events

Return:
0 Success

1=0 Error from GetLastWin32Error ()

Description:

Get the currently allowed events of this CAN bus device. This is a combination of one or
more CanEventFlags.

For a description of CanEventFlags see page 29.

Software Documentation Windows CE CAN Interface Software Interface for NET | 15 of 49

/|
/]

3.8 WaitCommEvent()

Signature:
int WaitCommEvent (out CanEventFlags mask)

Parameters:

mask Event that happened

Return:

0 Success

1=0 Error from GetLastWin32Error ()
Description:

Wait until an event occurs. Which events are reported is set with SetCommMask (). The
event that occurred is reported in mask.
For a description of CanEventFlags see page 29.

3.9 WriteAcceptancekFilter()

Signature:

int WriteAcceptanceFilter (
ref CanAcceptanceFilter filter)

Parameters:

filter Combination of the allowed IDs; all other IDs are ignored

Return:

0 Success

1=0 Error from GetLastWin32Error ()

Description:

Set the acceptance filter. The acceptance filter determines which incoming messages are
accepted and which are ignored, depending on the message ID.
For a description of CanAcceptanceFilter and an example see page 32.

Software Documentation Windows CE CAN Interface Software Interface for NET | 16 of 49

/|
/]

3.10ReadAcceptancekFilter()

Signature:

int ReadAcceptanceFilter (
out CanAcceptanceFilter filter)

Parameters:

filter Currently active settings

Return:

0 Success

1=0 Error from GetLastWin32Error ()

Description:

Returns the currently active acceptance filter. The acceptance filter determines which
incoming messages are accepted and which are ignored, depending on the message ID.
For a description of CanAcceptanceFilter and an example see page 32.

3.11SetBaudrate()

Signature:
int SetBaudrate (UInt32 baudrate)

Parameters:
baudrate Transfer speed

Return:

0 Success

1=0 Error from GetLastWin32Error ()
Description:

Set the speed of the CAN bus communication. The minimum and maximum allowed speed
can be obtained by function ReadProperties (). Usually they are in the range of 20000 to
1000000 Hz.

If you want to set a speed from a predefined Ilist of baud rates, use
SetBaudrateByIndex () instead.

Software Documentation Windows CE CAN Interface Software Interface for NET | 17 of 49

/|
/]

3.12GetBaudrate()

Signature:
int GetBaudrate (out UInt32 baudrate)

Parameters:
baudrate Current transfer speed

Return:

0 Success

1=0 Error from GetLastWin32Error ()
Description:

Returns the current speed of the CAN bus communication.
There is another function GetBaudrateByIndex () that returns the index into a table of
predefined baud rates.

3.13SetBaudrateBylndex()

Signature:
int SetBaudrateByIndex (UInt32 index)

Parameters:
index Index into predefined baud rate table

Return:
0 Success

1=0 Error from GetLastWin32Error ()

Description:

Set the speed of the CAN bus communication by using the entry of the predefined baud rate
table given by index. The baud rate table (and maximum index) can be obtained with
ReadProperties().

If you don'’t like to use a predefined speed, you can set the baud rate directly by using
function SetBaudrate ().

Software Documentation Windows CE CAN Interface Software Interface for NET | 18 of 49

/|
/]

3.14GetBaudrateByindex()

Signature:
int GetBaudrateByIndex (out UInt32 index)

Parameters:
index Index into predefined baud rate table

Return:
0 Success

1=0 Error from GetLastWin32Error ()

Description:

Returns the index of the entry of the predefined baud rate table that is corresponding with
the current speed of the CAN bus communication. The baud rate table (and maximum index)
can be determined with ReadProperties ().

If you want to get directly the speed, not the list index, use GetBaudrate () instead.

3.151nit()

Signature:
int Init ()

Return:

0 Success

1=0 Error from GetLastWin32Error ()
Description:

Initialise the CAN bus.

Software Documentation Windows CE CAN Interface Software Interface for NET | 19 of 49

/|
/]

3.16 SetCanMode()

Signature:
int SetCanMode (CanMode mode)

Parameters:

mode Mode to set

Return:

0 Success

1=0 Error from GetLastWin32Error ()
Description:

Set the working mode of the CAN controller.

Depending on the capabilities of the CAN bus controller, it can run in two different modes:
BasiCan mode (also known as CAN2.0A) and PeliCan mode (also known as CANZ2.0B).
PeliCan mode is more powerful and allows additional features like an extended frame format
with 29-bit identifiers. BasiCan mode can tolerate 29-bit identifiers on the bus, but can only
process the normal frame format with 11-bit identifiers.

You can use ReadProperties() to determine what modes the NetDCU controller
supports. For a description of CanMode see page 30.

3.17SetCommand()

Signature:
int SetCommand (CanCommand command)

Parameters:
command Command to execute

Return:
0 Success

1=0 Error from GetLastWin32Error ()

Description:

Execute a special command on the CAN bus controller. You can use ReadProperties ()
to determine which are supported by the NetDCU controller.

For a description of CanCommand see page 29.

Software Documentation Windows CE CAN Interface Software Interface for NET | 20 of 49

/|
/]

3.18WriteTransmitData()

Signature 1:
int WriteTransmitData (CanTransmitFormat fmt,
UInt32 id, byte rtr, byte dlc, byte[] msqg)

Parameters:

fmt Frame format (default, 11-bit, 29-bit IDs)

id Message ID

rtr Remote transmission request
0: CAN message with data
1: Request data from receiver

dlc Data length code (0..8)

msg Message (at least d1c bytes)

Return:

0 Success

1=0 Error from GetLastWin32Error ()

Description:

Transmit the given message in the given format on the CAN bus. The msg array may contain
more bytes, but only the first d1c bytes are used.

Unlike the Wwrite () functions that use an intermediate text representation to talk to the
driver, this function uses the binary data directly.

For a description of CanTransmitFormat see page 28.

Example:
Send three bytes 0x13, 0xB4, OxCF with message ID 0x1A7 and remote transmission

request 0 in the default frame format.
CanPort pCAN = new CanPort(...);
bytel] msg = new byte[6] {0x13, 0xB4, 0xCF, 0, 0, 0}
pCAN.WriteTransmitData (CanPort.CanTransmitFormat.DEFAULT,
0x1A7, 0, 3, msqg);

Software Documentation Windows CE CAN Interface Software Interface for NET | 21 of 49

/|
/]

Signature 2:
int WriteTransmitData (CanTransmitFormat fmt,
UInt32 id, byte rtr, byte[] msqg)

Parameters:

fmt Frame format (default, 11-bit, 29-bit IDs)

id Message ID

rtr Remote transmission request
0: CAN message with data
1: Request data from receiver

msg Message (d1c determined from array length)

Return:

0 Success

1=0 Error from GetLastWin32Error ()

Description:

Transmit the given message in the given format on the CAN bus. The message length is
determined by the msg array length, so it must not contain more than 8 bytes.

Unlike the Wwrite () functions that use an intermediate text representation to talk to the
driver, this function uses the binary data directly.

For a description of CanTransmitFormat see page 28.

Example:
Send three bytes 0x13, 0xB4, OxCF with message ID 0x1A7 in the default frame format.

CanPort pCAN = new CanPort(...);
bytel] msg = new bytel] {0x13, 0xB4, 0xCF};
pCAN.WriteTransmitData (CanPort.CanTransmitFormat.DEFAULT,

0x1A7, 0, msqg);

Software Documentation Windows CE CAN Interface Software Interface for NET | 22 of 49

/|
/]

Signature 3:
int WriteTransmitData (CanTransmitFormat fmt,
ref CanTransmitData data)

Parameters:

fmt Frame format (default, 11-bit, 29-bit IDs)
data Message data to send

Return:

0 Success

1=0 Error from GetLastWin32Error ()
Description:

Transmit the given message in the given format on the CAN bus. This variant uses a
structure to hold the transmit data.

Unlike the Wwrite () functions that use an intermediate text representation to talk to the
driver, this function uses the binary data directly.

For a description of CanTransmitFormat see page 28, for a description of
CanTransmitData see page 35.

Example:

Re-send some received message with the new ID 0x123.
CanPort pCAN = new CanPort(...);
CanPort.CanEvent e;
PCAN.ReadEventData (out e);
e.data.id = 0x123;
PCAN.WriteTransmitData (CanPort.CanTransmitFormat.DEFAULT,

ref e.data);

Software Documentation Windows CE CAN Interface Software Interface for NET | 23 of 49

/|
/]

3.19ReadEventData()

Signature:

int ReadEventData (out CanEvent evnt)

Parameters:
evnt Returned event data

Return:
0 Success

1=0 Error from GetLastWin32Error ()

Description:

Read the data of the next event in the queue. This command generates an error when all
events are already read and there is no new event data available. Usually this is combined in

some form with WaitCommEvent ().

If you want to get the event data directly in some readable text form, you may want to use

function Read () instead.

For a description of CanEvent see page 35.

Example:

CanPbPort pCAN =

CanPort.CanEvent e;
PCAN.ReadEventData (out e);

3.20ReadTime()

Signature:
int ReadTime (out CanTime time)

Parameters:
time Current CAN bus time

Return:
0 Success

1=0 Error from GetLastWin32Error ()

Description:

new

CanPort (...);

Read the current CAN bus time. This is based on the internal tick count, i.e. the number of
milliseconds since power-on. It is a 64 bit number divided in a low and high part.

For a description of CanTime see page 35.

/|
/]

Software Documentation Windows CE CAN Interface Software Interface for NET | 24 of 49

3.21 SetDefaultFrameFormat()

int SetDefaultFrameFormat (
CanTransmitFormat fmt)

Parameters:

fmt Frame format (default, 11-bit, 29-bit IDs)
Return:

0 Success

1=0 Error from GetLastWin32Error ()
Description:

Set the default frame format. The default format set here is used in all subsequent calls of
WriteTransmitData (), when DEFAULT is used there.
For a description of CanTransmitFormat see page 28.
If DEFAULT is used here with SetDefaultFrameFormat (), the chosen frame length
depends on the capabilities of the CAN bus controller:
CAN2.0A Set default to STANDARD (11-bit IDs)
CAN2.0B Set default to EXTENDED (29-bit IDs)
Call ReadProperties () to check the features of the CAN bus controller.

3.22TestDevice()

Signature:
int TestDevice ()

Return:

0 Normal Mode

1 Reset Mode

-1 Device not active
Description:

Test the mode of the CAN bus controller.
Please note that this function returns the result directly, there is no special error or success
report.

Software Documentation Windows CE CAN Interface Software Interface for NET | 25 of 49

/|
/]

3.23ReadProperties()

Signature:
int ReadProperties (out CanProperties prop)

Parameters:
prop Current properties

Return:
0 Success

1=0 Error from GetLastWin32Error ()

Description:

Read the features of the CAN bus controller. This returns the device name, the driver
software version, the capabilities of the CAN bus controller, the supported commands, the
supported baud rates, and the number of controller registers.

For a description of CanProperties see page 36.

3.24ReadRegister()

Signature:
int ReadRegister (byte reg, out byte wval)

Parameters:

reg Number of register to read from
val Read value

Return:

0 Success

1=0 Error from GetLastWin32Error ()
Description:

Read the specified CAN controller register in Normal Mode, i.e. switch to Normal Mode
before reading.

The CAN controller can run in two different modes: Reset Mode automatically active after
power-on, and Normal Mode for regular operation. In Reset Mode, some configuration
registers may be accessible that are hidden in Normal Mode. You can use TestDevice ()
to determine the current running mode.

Software Documentation Windows CE CAN Interface Software Interface for NET | 26 of 49

/|
/]

3.25WriteRegister()

Signature:
int WriteRegister (byte reg, byte wval)

Parameters:

reg Number of register to write to

val Value to write

Return:

0 Success

1=0 Error from GetLastWin32Error ()
Description:

Write the given value to the specified CAN controller register in Normal Mode, i.e. switch to
Normal Mode before writing.

The CAN controller can run in two different modes: Reset Mode automatically active after
power-on, and Normal Mode for regular operation. In Reset Mode, some configuration
registers may be accessible that are hidden in Normal Mode. You can use TestDevice ()
to determine the current running mode.

3.26 ReadRegisterRM()

Signature:
int ReadRegisterRM(byte reg, out byte val)

Parameters:

reg Number of register to read from
val Read value

Return:

0 Success

1=0 Error from GetLastWin32Error ()
Description:

Read the specified CAN controller register in Reset Mode, i.e. switch to Reset Mode before
reading.

The CAN controller can run in two different modes: Reset Mode automatically active after
power-on, and Normal Mode for regular operation. In Reset Mode, some configuration
registers may be accessible that are hidden in Normal Mode. You can use TestDevice ()
to determine the current running mode.

Software Documentation Windows CE CAN Interface Software Interface for NET | 27 of 49

/|
/]

3.27WriteRegisterRM()

Signature:
int WriteRegisterRM(byte reg, byte wval)

Parameters:

reg Number of register to write to

val Value to write

Return:

0 Success

1=0 Error from GetLastWin32Error ()
Description:

Write the given value to the specified CAN controller register in Reset Mode, i.e. switch to
Reset Mode before writing.

The CAN controller can run in two different modes: Reset Mode automatically active after
power-on, and Normal Mode for regular operation. In Reset Mode, some configuration
registers may be accessible that are hidden in Normal Mode. You can use TestDevice ()
to determine the current running mode.

3.28enum CanAccess

Values:

QUERY Device query access only. You can’t transmit or receive, just query the device
settings.

READ Read access. You can receive messages.

WRITE Write access. You can transmit messages.

READ WRITE Read and write access. You can receive and transmit messages.

Description:
Defines the access type to the CAN port when constructing an instance of the CanPort
class.

3.29enum CanTransmitFormat

Values:
DEFAULT Send in default frame format

STANDARD Send frames with 11-bit IDs
EXTENDED Send frames with 29-bit IDs

Description:
CAN bus transmission formats for WriteTransmitData () and
SetDefaultFrameFormat ().

|‘ Software Documentation Windows CE CAN Interface Software Interface for NET | 28 of 49

g

3.30enum CanEventFlags

Values:
RECEIVED

TRANSMITTED
CANBUS TRANSFERS

BUS ERROR
WARNING
ARBITRATION LOST
OVERRUN

CANBUS ERRORS

PASSIVE

ENTERING STANDBY
LEAVING STANDBY
DEVICE CHANGED
CANBUS STATES

CANBUS ALL

Description:

Message received
Message transmitted
Both of the above events

There was a CAN bus error
There was a warning

CAN bus arbitration lost
Message overrun

All of the above four events

Passive mode

Entering standby mode
Leaving standby mode
Device mode changed

All of the above four events

All possible events

These flags describe the possible events that can happen on the CAN bus. When setting a
mask with SetCommMask (), any combination of the above values is possible. When waiting
for an event with WaitCommEvent () or when reading event data with ReadEventData (),
only one single event is active and therefore set.

3.31enum CanCommand

Values:
ABORT TRANSMISSION

CLEAR OVERRUN

Clear out queue

Clear overrun flag

ENTER STANDBY Enter standby mode, wake up on any event
LEAVE STANDBY Manually leave standby mode

SELF RECEPTION REQUEST Self reception request
LISTEN ON
LISTEN OFF
VIRTUALIZE ON
VIRTUALIZE OFF

Enable listen-only mode
Disable listen-only mode
Enter virtualization mode
Leave virtualization mode

Description:
These values can be used in SetCommand (). Use function ReadProperties () to
determine which commands are supported by the CAN bus controller.

|‘ Software Documentation Windows CE CAN Interface Software Interface for NET | 29 of 49

g

3.32enum CanMode

Values:
BASICAN Set BasiCan mode (=CAN2.0A)

CAN 2 0 A The same as BASICAN
PELICAN Set PeliCan mode (=CAN2.0B)
CAN 2 0 B Thesame as PELICAN

Description:
These values are used in SetCanMode () and describe one of the possible CAN modes:
BasiCan mode (=CAN2.0A) or PeliCan mode (=CAN2.0B).

3.33enum CanChipsetFlags

Values:
CAN 2 0 A Controller supports BasiCan mode (CAN2.0A)

CAN 2 0 B Controller supports PeliCan mode (CAN2.0B)
EXT FRAME Controller supports extended frames
POLLING Controller supports polling

Description:
This value is used in the CanProperties structure and describes the capabilities of the
CAN controller. The values are flags, so the reported value can be any combination of the
above values.

3.34enum APIError

Values:
ERROR FILE NOT FOUND Port not found

ERROR ACCESS DENIED Access to port denied
ERROR INVALID HANDLE Invalid handle

ERROR NOT READY Device not ready

ERROR_WRITE FAULT Write fault

ERROR_INVALID PARAMETER Bad parameters
ERROR_INVALID NAME Invalid port name
Description:

This type enumerates some of the error values you might encounter when using the
CanPort class. The Win32 API functions usually return error values that can be checked by
Marshal.GetLastWin32Error () and this is also the error code returned by almost all
functions of the CanPort class on failure.

Please note that this list is not exhaustive and may be extended in future software versions.

|‘ Software Documentation Windows CE CAN Interface Software Interface for NET | 30 of 49

g

3.35struct CommTimeouts:

Entries:
UInt32

UInt32

UInt32

UInt32

UInt32

Description:

ReadIntervalTimeout
Maximum acceptable time between two bytes on the CAN bus line. 0 means
no interval timing used.
ReadTotalTimeoutMultiplier
Total read timeout multiplier. This number is multiplied with the requested
number of bytes to read.
ReadTotalTimeoutConstant
This value is added to the product above to build the total read timeout.
WriteTotalTimeoutMultiplier
Total write timeout multiplier. This number is multiplied with the requested
number of bytes to write.
WriteTotalTimeoutConstant
This value is added to the product above to build the total write timeout.

Timeout values for CAN access. All timeout values are given in milliseconds (ms).

/|
/]

Software Documentation Windows CE CAN Interface Software Interface for NET | 31 of 49

3.36struct CanAcceptanceFilter

Entries:

UInt32 code ID code

UInt32 mask Mask for active/inactive bits
1-bit: always accepted
0-bit: accepted if code matches

Description:

The acceptance filter defines which incoming messages are accepted and which are
ignored. This depends on the message ID. By using a code part and a mask part, you can
define ranges of IDs that are accepted by the CAN bus device.

The mask defines which bits of the message ID don’t matter and are always accepted, and
which bits are relevant and must match the code to be accepted. The check uses a binary
OR of the mask and the code on one hand, and the mask and the ID on the other hand and
then checks if the two values are equal. Then the message is accepted.

The handling of the mask differs depending on the CAN controller mode.

1. BasiCan mode (CAN2.0A)

Here code, mask and message ID are 11 bits wide, but only the upper 8 bits of the mask
can be influenced. The lower 3 bits are always assumed as 1. Therefore the lower 3 bits of
the ID are always accepted, no matter what the code says. In the following graphic you can
see how the mask and code match to the incoming frame format.

D RTR DLC 1% Data Byte
A

-
[o[o]8]7]6]51413] [2]=]e]o]3]2]x]o] [Z[6]5T2I3]2]x]o] - 'ncoming Frame

[rfoTe]7 e s 4]3] [2Jaf0] code

[rofoTef7 e s 4]3] [2T2fO] masx

Grey squares denote fields having no influence on the ID acceptance.

Example 1:
code = 0x143,mask = 0x70F, ID = 0xO06F.

ID = 0x06D RTR DLC 1% Data Byte
A
L~
[oJofof o1]1Jo]2] [E]o]x ... Incoming Frame
different
[OIoTa o] JoJo]0] [OE[E] code = 0x143

[E[E]a oJoJoJoJa] [E[E[E] mask = ox7or
Ux143

0x70F = O0x74F
0x06D | O0x70F = 0x76F
As the two values are different, the message is ignored.

Software Documentation Windows CE CAN Interface Software Interface for NET | 32 of 49

/|
/]

Example 2:
code = 0x332,mask = 0x600, ID = 0x535.

ID = 0x535 1% Data Byte

RTR DLC
A
- :Hﬁ
[Elo]1JoJo2]1]o] [E]e]x= ﬁ ... Incoming Frame

equal

[oT =] 1o o110 code = 0x332
[T]]oJoJoJoJo]o] mask = 0x600

First of all the lower 3 bits of the mask will automatically be set to 1, so in the end the mask
= 0x607 is used.
0x332 | 0x607 = 0x737
0x535 | 0x607 = 0x737
The two values are equal, so this message is accepted.
Remark: We used mask = 0x600 just to show the behaviour of the three least significant
bits. But please do not rely on this mechanism. It is recommended to always set these bits in
the mask, so there is no surprise on future hardware. Therefore you should set mask =
0x607 right from the beginning.

Software Documentation Windows CE CAN Interface Software Interface for NET | 33 of 49

/|
/]

2. PeliCan mode (CAN2.0B), receiving extended frame

Here code, mask and message ID encompass 29 bits, but also RTR is used as a 30™ bit in
the acceptance computation. However these bits are set in the upper 30 bits of the 32 bit
value, the lower two bits are unused and should be set to 1.

ID RTR

[28[27]26]25[24]23[22]21] [eofaofas[i7fuefas[14[13] [12aafiofof8]7[6]5] [4]3[2]1[o]Jo]] - !ncoming Frame

[31]30][29]28[27]26]25]24] [23[22[21f20]1918]17[26] [1s[r4fr3[r2fufiof 9] 8] [7]6]5[4[3]2[xf0] code

[31[30f29[28[27]26]25[24] [23[22]21]20[1918[17]16] [15[14[as[iziafiof o8] [7]6]s[4[3[2[EJO] mask

unused

Example:
code = 0x664000C0, mask = O0xCOEOOOFF, ID = O0xA6AQO00F,RTR = O

ID = 0x14D40013 RTR

[EToT :JoJoJ2]2To] [EJeJaJoJoJoJoJo] ToJoJoJoJoJoJoJo] [ETOJeJ=]=]o]] - 'ncoming Frame
equal equal
[IEolo[o] [EIEmEIelelololo]. [e[o[o[o[o[o[o[o] [EIEIOIOIOIEIEIE] cod- - ox¢s4ococo

[E[2ToJofoJoJoo] [efafafo o oJofo] [ofofofoJoJofofo] [EfEaTafafafaya] rask = oxcozooors

For the computation, the ID value must be shifted left by 3 and the RTR code must be
inserted at bit 2. This results in IDshifted = 0xA6A00098.
0x664000C0 | OXCOEOOOFF = OXE6EOOO0FF
OXAB6A00098 | OXCOEOOOFF = OXE6EOOOFF
The values are equal, the message is accepted.

3. PeliCan mode (CAN2.0B), receiving standard frame

Here the most significant 12 bits are matched against the message ID and RTR, and the
least significant 16 bits are matched against the first two data bytes of the incoming
message. Bits 16 to 19 of the mask are automatically taken as 1s, so these bits, mapping
the DLC of the message, are always accepted.

D RTR DLC 1° Data Byte 2™ pata Byte
N N A
[N N
[ofo]8]7]6]5T4]3] [2]x]o]o]8T2]a]o] [7]e]sT4I3]2]2]o] [4]3]2]xJoJoJoJo] .. Incoming Frame

[31]30]29]28]27]26]25[24] [2322]21]20[n0fuB]i7]a6] [15[14[is[izfiifiofo8] [7]e]5[4]3]2]1]0] cede

[31]30f29]28]27]26]25]24] [23]22]21]20[a0fu8]a7]a6] [15[14[13[izfuafiof o8] [7]6]s[4]3]2]1]o] mask

Remark

The SJA1000 CAN bus controller chip, that is used on the NetDCU boards, allows even
more complex acceptance checking in PeliCan mode, for example using two different but
shorter code/mask pairs. However discussing these is beyond the scope of this document.
Please refer to the original CAN controller documentation. Some examples are also given in
the NetDCU CANINTF driver documentation.

Software Documentation Windows CE CAN Interface Software Interface for NET | 34 of 49

/|
/]

3.37struct CanTime

Entries:

UInt32 low Low word of the time value

UInt32 high High word of the time value
Description:

The CAN bus time in this driver implementation is based on the internal WinCE tick count,
i.e. the number of milliseconds since power-on. It is a 64 bit value split in a low and high part
with each 32 bits.

3.38struct CanTransmitData

Entries:

UInt32 id
ID of the message, usually identifying the target device or message type

byte rtr
Remote transmission request
0: CAN message with data
1: Request data from receiver

byte dlc
Data length code, i.e. number of message bytes in msg (0..8)

bytel] msg
The bytes of the message itself. Only the first d1c bytes are used.

Description:

Data describing a CAN message. Please note that the byte array msg can be larger than the
message, but only d1c bytes are actually transmitted (on send) or valid (on receive).

3.39struct CanEvent

Entries:

CanEventFlags event type
Type of event the structure describes

CanTime time
Time when this event occurred

uint lost
Number of messages that were lost since the last ReadEventData ()

CanTransmitData data
The message data

int arbitration
(unused)

Description:

The data of a CAN bus event shows the type of event that occurred, the time when this
occurred, and the number of messages that were lost due to slow reading. In case of receive
and transmit events, the data of the transferred message is also included. This structure is
only used with ReadEventData ().

G |‘ Software Documentation Windows CE CAN Interface Software Interface for NET | 35 of 49

3.40struct CanProperties

Entries:

UInt32 version
CAN bus driver software version

string name
Name (description) of the device

UInt32 baudmin
Minimum baud rate supported

UInt32 baudmax
Maximum baud rate supported

UInt32 nCommands
Number of available commands

CanCommand/[] commands
Array with commands. Only the first nCommands entries are valid

UInt32 nBaudrates
Number of entries in the predefined baud rate table

UInt321[] baudrates
Baud rate table. Array with supported baud rates. Only the first nBaudrates
entries are valid

CanChipsetFlags chipset flags
Capabilities of the CAN controller

UInt32 nRegisters
Number of available controller registers

Description:

This structure shows the capabilities of the CAN bus controller and has influence on the
value ranges allowed in some of the CanPort functions.

e baudmin, baudmax define the minimum and maximum values for SetBaudrate ().

e nBaudrates and baudrates[] define the possible index values available for
SetBaudrateByIndex ().

e nCommands and commands[] define the possible commands that can be used in
SetCommand ().

e chipset flags shows the capabilities of the controller for WriteTransmitData (),
SetCanMode (), and SetDefaultFrameFormat ().

e nRegisters shows which registers can be read and written with ReadRegister (),
ReadRegisterRM (), WriteRegister (), and WriteRegisterRM().

Software Documentation Windows CE CAN Interface Software Interface for NET | 36 of 49

/|
/]

4 The CanPortException class

The canPortException class defines an exception used in combination with the CanPort
class. When an error happens within a function of CanPort, it throws this kind of exception,
SO you can reactto it in a try-catch statement.

The CanPortException extends ApplicationException by a read-only property int
Reason, showing the error code why the exception was thrown. This is usually the value re-
turned by the Win32 API via GetLastWin32Error (). A typical piece of code would look
like this.

try
{

CanPort pCAN = new CanPort ("CID1l:", ...);

// Use pCAN

}
catch (CanPortException e)
{

switch (e .Reason)

{

case CanPort.APIError.ERROR INVALID NAME:

// Handle error
case CanPort.APIError.ERROR ACCESS DENIED:

// Handle error

}

When examining the reason, CanPort.APIError (see page 30) may be of some help to
check for possible error sources.

Software Documentation Windows CE CAN Interface Software Interface for NET | 37 of 49

/|
/]

4.1 CanPortException() (Construction)

Signature 1:

CanPortException (string text, int reason)
Parameters:

text Error text

reason Error number

Description:

Store given error value as Reason. The error text is automatically completed with “: Error
code <reason>" where <reason> is the given error number.

Signature 2:

CanPortException (string text, int reason,
Exception inner)

Parameters:

text Error text

reason Error number

inner Inner exception

Description:

Same as above, but with inner exception.

Signature 3:
CanPortException (string text)

Parameters:
text Error text

Description:
Same as above, but automatically use the result of GetLastWin32Error () as error
number.

Signature 4:

CanPortException (string text, Exception inner)
Parameters:

text Error text

inner Inner exception

Description:

Same as above, with inner exception.

G |‘ Software Documentation Windows CE CAN Interface Software Interface for NET | 38 of 49

Signature 5:
CanPortException (int reason)

Parameters:
reason Error number

Description:
Use given error number and "System error" as error text.

Signature 6:

CanPortException (int reason, Exception inner)
Parameters:

reason Error number

inner Inner exception

Description:

Same as above, but with inner exception.

Signature 7:
CanPortException ()

Description:
Use GetLastWin32Error () as error number and string "System error" as error text.

Signature 8:

CanPortException (Exception inner)
Parameters:

inner Inner exception

Description:

Same as above, but with inner exception.

Software Documentation Windows CE CAN Interface Software Interface for NET | 39 of 49

/|
/]

5 Sample Program CanWrite

This small command line program sends a number of messages over the CAN bus. With
each message, the ID is incremented by one. You can select the port, the transfer speed
and the number of messages to send on the command line.

Usage:

CanWrite [-2] [-b <baudrate] [-d <device>] [-n <count>]
Send messages over CAN port

Options:

-2 Show this help
-b <baudrate> Set line speed to <baudrate> (default: 1000000)
-d <device> Set port to use to <device> (default: CID1:)
-n <count> Send <count> messages (default: 1000)

Remark:
This program uses the exception error model. When an error occurs inside a CanPort
function, a CanPortException is thrown.

Software Documentation Windows CE CAN Interface Software Interface for NET | 40 of 49

/|
/]

5.1 Source Code

using System;
using System.Data;
using FS.NetDCU;
namespace MyProgram
{
class CanWrite
{
static int Main (string[] args)
{
string devname "CID1:";
uint baudrate = 250000;
uint count 1000;
bool bSetBaudrate = false;
int retval;
uint i;
Console.WriteLine ("CanWrite .NET Version 1.0");
/* Parse command line options */
i = 0;
while (i<args.Length)
{
switch (args([i])
{
case "-2?n: // Show usage
default:
Console.WriteLine ("CanWrite [-2] [-b <baudrate] "
+"[-d <device>] [-n <count>1");
Console.WriteLine ("Send messages over CAN port") ;
Console.WriteLine();
Console.WriteLine ("Options:");
Console.WriteLine (" -2 Show this help");
Console.WriteLine (" -b <baudrate> Set line speed to "
+"<baudrate> (default: 1000000) ™) ;7
Console.WriteLine (" -d <device> Set port to use to "
+"<device> (default: CID1:)");
Console.WriteLine (" -n <count> Send <count> "
+"messages (default: 1000)");
return 0;
case "-d": // Parse device
if (i+1 >= args.Length)
goto default;
devname = args[++1i];
break;
case // Parse baudrate
if (i+1 >= args.Length)
goto default;
bSetBaudrate = true;
baudrate = uint.Parse (args[++i]);
break;
case "_n" // Parse package count
if (i+1 >= args.Length)
goto default;
count = uint.Parse (args[++i]);
break;
}
i++;
}
/* Send messages */
try
{
CanPort.CanTime time;
CanPort.CanProperties prop;
/* Open and configure port */
CanPort pCAN = new CanPort (devname, CanPort.CanAccess.WRITE);
if (bSetBaudrate)
pCAN. SetBaudrate (baudrate) ;
pCAN.GetBaudrate (out baudrate);
/* Read and print properties */
pCAN.ReadProperties (out prop) ;
Console.WriteLine();
Console.WriteLine ("CAN Bus Properties:");
Console.WriteLine ("Device name: r{oy'", prop.name) ;
Console.WriteLine ("Version: {0}, prop.version) ;
Console.WriteLine ("Baudrate: min {0} Hz, max: {1} Hz",
prop.baudmin, prop.baudmax) ;
Console.Write ("{0} Commands : ", prop.nCommands) ;
for (i = 0; i < prop.nCommands; i++)
Console.Write (" Ox{0:x2}", prop.commands [i]);
Console.WriteLine();
Console.Write ("{0} Baudrates: ", prop.nBaudrates) ;
for (i = 0; i < prop.nBaudrates; it++)
Console.Write (" {0}", prop.baudrates[i]);
Console.WriteLine();
Console.WriteLine ("Chipset flags: 0x{0:X}",
prop.chipset_flags);
Console.WriteLine ("{0} Registers", prop.nRegisters) ;
Console.WriteLine () ;
pCAN.ReadTime (out time) ;
Console.WriteLine ("Current time: {0}y:{1}",
time.high, time.low) ;
Console.WriteLine () ;
/* Transmit messages */
Console.WriteLine ("Start sending {0} messages to {1} with "
+"baudrate {2} Hz", count, devname, baudrate) ;
for (i=1; i<count; i++)
{
byte[] msg = new byte([8] {1, 2, 3, 4, 5, 6, 7, 8};
pCAN.WriteTransmitData (CanPort.CanTransmitFormat.DEFAULT,
i, 0, msgq) ;
}
}
catch (CanPortException e)

Software Documentation Windows CE CAN Interface Software Interface for NET | 41 of 49

/* Print error message */
Console.WritelLine (e.Message) ;
return
}
return 0;
} // Main ()
} // class CanWrite

1;

} // namespace MyProgram

Program variant:
The above version uses WriteTransmitData (), which is the binary interface to the CAN
driver.

PCAN.WriteTransmitData (CanPort.CanTransmitFormat.DEFAULT,
i, 0, msqg) ;

The following line in the transfer loop would use the text interface with Wwrite () instead.
PCAN.Write (i.ToString("X") + " 0 8 1 2 3 4 5 6 7 8\n");

Software Documentation Windows CE CAN Interface Software Interface for NET | 42 of 49

/|
/]

6 Sample Program CanRead

This small command line program receives a number of messages over the CAN bus and
prints its content to the console. On the command line you can select the port, the transfer
speed and the number of messages to receive until the program terminates.

Usage:

CanRead [-?] [-b <baudrate] [-d <device>] [-n <count>]
Read messages from CAN port

Options:

-2 Show this help
-b <baudrate> Set line speed to <baudrate> (default: 1000000)
-d <device> Set port to use to <device> (default: CID1:)
-n <count> Stop after <count> messages (default: 1000)

Remark:
This program uses the C style return code error model. When an error occurs inside a
CanPort function, the function returns an error code. Otherwise it returns O.

Software Documentation Windows CE CAN Interface Software Interface for NET | 43 of 49

/|
/]

6.1 Source Code

using
using
using FS.NetDCU;
namespace
{
class
{
static int Main (string[]
{
string devname
uint baudrate =
uint count
bool bSetBaudrate =
int
uint i;
Console.WriteLine ("CanRead .NET Version 1.0");
/* Parse command line
i =
while
{
switch
{
case
default:
Console.WriteLine ("CanRead [-2] [-b
+"[-d <device>] [-n
Console.WriteLine ("Read messages from
Console.WriteLine();
Console.WriteLine ("Options:");
Console.WriteLine (" -2
Console.WriteLine (" -b <baudrate> Set line
+"<baudrate> (default:
Console.WriteLine (" -d <device> Set port
+"<device> (default:
Console.WriteLine (" -n <count> Stop
+"messages (default:
return 0;
case "-d":
if (i+1 >=
goto
devname =
break;
case "-b":
if (i+1 >=
goto
bSetBaudrate =
baudrate =
break;
case "-n" //
if (i+1 >=
goto
count =
break;
}
i++;
}
/* Read messages
try
{
CanPort.CanAcceptanceFilter
CanPort.CanEventFlags mask;
/* Open and configure
CanPort pCAN = new CanPort (devname,
PCAN.HandleErrorsViaReturn (true); // Handle errors ourselves
if
{
retval
if (retval =
throw new CanPortException("Can't
retval) ;
}
retval = pCAN.GetBaudrate (out
if (retval I=
throw new CanPortException("Can't get
/* Read and print some
Console.WriteLine () ;
retval = PCAN.ReadAcceptanceFilter (out
if (retval I=
throw new CanPortException("Can't read
retval) ;
Console.WriteLine ("Previous acceptance filter:

+"mask=0x{1:X}",

filter.code
filter.mask

retval
if
throw new
retval
if
throw new

Console.WriteLine ("New

+"mask=0x{1:X}",
PCAN.GetCommMask (out mask) ;

retval =
if

throw new

filter.code,

(retval

CanPortException("Can't

+"filter",

(retval

CanPortException("Can't

retval) ;
acceptance
filter.code,

(retval

CanPortException("Can't
Console.WriteLine ("Previous event mask:

(retval

{orm,

filter.mask);

pCAN.WriteAcceptanceFilter (ref

write new

pCAN.ReadAcceptanceFilter (out

read

filter:
filter.mask);

mask) ;

System;
System.Data;

MyProgram
CanRead
args)

"CID1:";
250000;
1000;
false;
retval;

options */
0;
(i<args.Length)

(args[i])

n_omn.

<baudrate] "
<count>]");

CAN port") ;

Show this help");
speed to "
1000000) ™) ;7

to "
CID1:)");
<count> "
1000)™);

after

device
args.Length)
default;
args[++1i];

// Parse

baudrate
args.Length)
default;
true;
uint.Parse (args[++1i]);

// Parse

Parse package count
args.Length)

default;

uint.Parse (args[++i]);

*/

filter;

port */

CanPort.CanAccess.READ) ;
(bSetBaudrate)

pCAN. SetBaudrate (baudrate) ;

0

set baudrate™,

baudrate) ;

0

baudrate", retval);
configuration */

filter);

0

acceptance filter"™,
code=0x{0:X}, "

0;

OxFFFFFFFF;

filter);

0

acceptance "

retval) ;

filter);

0

acceptance filter"™,
code=0x{0:X}, "

0)

mask", retval) ;

CanPort.CanEventFlags.CANBUS_ALL;

pCAN.SetCommMask (mask) ;
0

mask
retval
if

Software Documentation Windows CE CAN Interface Software Interface for NET | 44 of 49

throw new CanPortException("Can't set new mask", retval);
retval = pCAN.GetCommMask (out mask) ;
if (retval I= 0)
throw new CanPortException("Can't get comm mask", retval) ;
Console.WritelLine ("New event mask: {0}", mask);
/* Receive messages */
Console.WriteLine ("Start receiving {0} messages on {1} with "
+"baudrate {2} Hz", count, devname, baudrate);
[/ SOSOOSOOSOOSOOSS55>>
while (true)
{
CanPort.CanEvent ev;
/* Read events until error */
while (pCAN.ReadEventData (out ev) == 0)
{
/* Print CAN bus time when event occurred */
Console.Write ("{0:X8}:{1:X8}: ",
ev.time.high, ev.time.low);
switch (ev.event_type)
{
case CanPort.CanEventFlags.RECEIVED:
Console.Write ("Received: id=0x{0:x8}, rtr={1}, "
+"dlc={2}, lost={3}", ev.data.id,
ev.data.rtr, ev.data.dlc, ev.lost);
if (ev.data.dlc > 0)
{
Console.WriteLine();
Console.Write (" msg:");
for (i = 0; i < ev.data.dlc; i++)
Console.Write (" Ox{0:X2}", ev.data.msg[i]);

}

Console.WriteLine();

break;
case
Console.Write ("Transmitted:
+"dle={2}",
ev.data.dlc,
if

Console.Write (",
for (i
Console.Write ("

}

CanPort.CanEventFlags.TRANSMITTED:

id=0x{0:X8},
ev.data.id,

(ev.data.dlc >

= 0; i <
Ox{0:X2}",

rtr={1}, "
ev.data.rtr,

ev.lost);

0

msg:");

ev.data.dlc; it++)

ev.data.msg[i]);

Console.WriteLine();
break;
case CanPort.CanEventFlags.WARNING:
Console.Writeline ("Warning") ;
break;
case CanPort.CanEventFlags.BUS_ERROR:
Console.WritelLine ("Error");
break;
case CanPort.CanEventFlags.ARBITRATION LOST:
Console.WriteLine ("Arbitration lost");
break;
case CanPort.CanEventFlags.OVERRUN:
Console.WriteLine ("Overrun");
break;
case CanPort.CanEventFlags.DEVICE_CHANGED:
Console.WritelLine ("Device changed") ;
break;
case CanPort.CanEventFlags.PASSIVE:
Console.WriteLine ("Passive");
break;
case CanPort.CanEventFlags.ENTERING_STANDBY:
Console.Writeline ("Entering standby") ;
break;
case CanPort.CanEventFlags.LEAVING STANDBY:
Console.WritelLine ("Leaving standby") ;
break;
}
if (--count == 0)
goto DONE;
}
/* Wait for next event */
retval = pCAN.WaitCommEvent (out mask) ;
if (retval = 0)
throw new CanPortException ("Error in WaitCommEvent ()"
retval) ;
}
DONE :
// <<LLLKLLLLLLLLLLLLLLL
}
catch (CanPortException e)
{
/* Print error message */
Console.WritelLine (e.Message) ;
return 1;
}
return 0;
} // Main ()
} // class CanRead

} // namespace MyProgram

Program variant:

The above version uses ReadEventDataData (), which is the binary interface to the CAN
driver. The program shows how the different events can be interpreted, and instead of
printing the content to the console, the program could have used the data in any other way.

Software Documentation Windows CE CAN Interface Software Interface for NET | 45 of 49

To have the program use the text interface with Read (), the part between
[/ SSSSSSSSSSSSS55>>>>>

and

[/ <<<KKLKLLLLKLLLLKLLLLLLKL

needs to be replaced with the following code fragment.

while (count--)

{

}

string message;

retval = pCAN.Read (out message) ;

if (retval I= 0)
throw new CanPortException ("Read error", retval) ;

Console.WritelLine (message) ;

This looks much easier. But it is only suited when the format provided by Read () is exactly
what you want. To react differently according to each event type, it is definitely more effort to
parse the text output from Read () than using the binary interface with ReadEventData ()
directly.

Software Documentation Windows CE CAN Interface Software Interface for NET | 46 of 49

/|
/]

7 Appendix

Important Notice

The information in this publication has been carefully checked and is believed to be entirely
accurate at the time of publication. F&S Elektronik Systeme assumes no responsibility,
however, for possible errors or omissions, or for any consequences resulting from the use of
the information contained in this documentation.

F&S Elektronik Systeme reserves the right to make changes in its products or product
specifications or product documentation with the intent to improve function or design at any
time and without notice and is not required to update this documentation to reflect such
changes.

F&S Elektronik Systeme makes no warranty or guarantee regarding the suitability of its
products for any particular purpose, nor does F&S Elektronik Systeme assume any liability
arising out of the documentation or use of any product and specifically disclaims any and all
liability, including without limitation any consequential or incidental damages.

Specific testing of all parameters of each device is not necessarily performed unless
required by law or regulation.

Products are not designed, intended, or authorized for use as components in systems
intended for applications intended to support or sustain life, or for any other application in
which the failure of the product from F&S Elektronik Systeme could create a situation where
personal injury or death may occur. Should the Buyer purchase or use a F&S Elektronik
Systeme product for any such unintended or unauthorized application, the Buyer shall
indemnify and hold F&S Elektronik Systeme and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, expenses, and
reasonable attorney fees arising out of, either directly or indirectly, any claim of personal
injury or death that may be associated with such unintended or unauthorized use, even if
such claim alleges that F&S Elektronik Systeme was negligent regarding the design or
manufacture of said product.

Specifications are subject to change without notice.

Warranty Terms

Hardware Warranties

F&S guarantees hardware products against defects in workmanship and material for a
period of one (2) year from the date of shipment. Your sole remedy and F&S’s sole liability
shall be for F&S, at its sole discretion, to either repair or replace the defective hardware
product at no charge or to refund the purchase price. Shipment costs in both directions are
the responsibility of the customer. This warranty is void if the hardware product has been
altered or damaged by accident, misuse or abuse.

Software Warranties

Software is provided “AS IS”. F&S makes no warranties, either express or implied, with
regard to the software object code or software source code either or with respect to any third
party materials or intellectual property obtained from third parties. F&S makes no warranty
that the software is useable or fit for any particular purpose. This warranty replaces all other
warranties written or unwritten. F&S expressly disclaims any such warranties. In no case
shall F&S be liable for any consequential damages.

G |‘ Software Documentation Windows CE CAN Interface Software Interface for NET | 47 of 49

Disclaimer of Warranty

THIS WARRANTY IS MADE IN PLACE OF ANY OTHER WARRANTY, WHETHER
EXPRESSED, OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A SPECIFIC
PURPOSE, NON-INFRINGEMENT OR THEIR EQUIVALENTS UNDER THE LAWS OF
ANY JURISDICTION, EXCEPT THE WARRANTY EXPRESSLY STATED HEREIN. THE
REMEDIES SET FORTH HEREIN SHALL BE THE SOLE AND EXCLUSIVE REMEDIES OF
ANY PURCHASER WITH RESPECT TO ANY DEFECTIVE PRODUCT.

Limitation on Liability

UNDER NO CIRCUMSTANCES SHALL F&S BE LIABLE FOR ANY LOSS, DAMAGE OR
EXPENSE SUFFERED OR INCURRED WITH RESPECT TO ANY DEFECTIVE PRODUCT.
IN NO EVENT SHALL F&S BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL
DAMAGES THAT YOU MAY SUFFER DIRECTLY OR INDIRECTLY FROM USE OF ANY
PRODUCT. BY ORDERING THE PRODUCT, THE CUSTOMER APPROVES THAT THE
F&S PRODUCT, HARDWARE AND SOFTWARE, WAS THOROUGHLY TESTED AND HAS
MET THE CUSTOMER'S REQUIREMETS AND SPECIFICATIONS

Software Documentation Windows CE CAN Interface Software Interface for NET | 48 of 49

/|
/]

	History
	About this document
	Table of Contents
	1 Introduction
	2 Installation
	2.1 Installing the device driver
	2.2 Installing the .NET library CanPort.dll

	3 The CanPort class
	3.1 CanPort() (Construction)
	3.2 Read()
	3.3 Write()
	3.4 SetCommTimeouts()
	3.5 GetCommTimeouts()
	3.6 SetCommMask()
	3.7 GetCommMask()
	3.8 WaitCommEvent()
	3.9 WriteAcceptanceFilter()
	3.10 ReadAcceptanceFilter()
	3.11 SetBaudrate()
	3.12 GetBaudrate()
	3.13 SetBaudrateByIndex()
	3.14 GetBaudrateByIndex()
	3.15 Init()
	3.16 SetCanMode()
	3.17 SetCommand()
	3.18 WriteTransmitData()
	3.19 ReadEventData()
	3.20 ReadTime()
	3.21 SetDefaultFrameFormat()
	3.22 TestDevice()
	3.23 ReadProperties()
	3.24 ReadRegister()
	3.25 WriteRegister()
	3.26 ReadRegisterRM()
	3.27 WriteRegisterRM()
	3.28 enum CanAccess
	3.29 enum CanTransmitFormat
	3.30 enum CanEventFlags
	3.31 enum CanCommand
	3.32 enum CanMode
	3.33 enum CanChipsetFlags
	3.34 enum APIError
	3.35 struct CommTimeouts:
	3.36 struct CanAcceptanceFilter
	3.37 struct CanTime
	3.38 struct CanTransmitData
	3.39 struct CanEvent
	3.40 struct CanProperties

	4 The CanPortException class
	4.1 CanPortException() (Construction)

	5 Sample Program CanWrite
	5.1 Source Code

	6 Sample Program CanRead
	6.1 Source Code

	7 Appendix
	Important Notice
	Warranty Terms

