
Kernel UpDate Tool

UpDate kernel image during runtime
Windows Embedded Compact

Version 1.13
2015-10-06

© F&S Elektronik Systeme GmbH

Untere Waldplätze 23

D-70569 Stuttgart

Fon: +49(0)711-123722-0

Fax: +49(0)711 – 123722-99

History

Date V Platform A,M,R Chapter Description Au

2007-09-01 1.0 - A * First revision MK

2007-11-10 1.1 PicoMOD1 A 1.2 Support for PicoMOD1 added. MK

2009-06-02 1.2 NetDCU11 A 1.2 Support for NetDCU11 added. A4 document layout. MK

2009-06-02 1.3 PicoMOD3 A 1.2 Support for PicoMOD3 added. MK

2009-06-23 1.4 PicoCOM1/2 A 1.2 Support for PicoCOM1/2 added. MK

2009-12-15 1.5 PicoMOD4 A 1.2 Support for PicoMOD4 added. MK

2010-02-04 1.6 * A 3 Kernel Update library documentation added. MK

2011-09-14 1.7 * A * XIP Kernel image support documented. MK

2011-09-21 1.8 * A 2.3 Option to disable up-to-date check added. MK

2012-01-08 1.9 * A,M * General documentation update. Support for FSS5PV201
added.

MK

2014-01-21 1.10 * A, M * General documentation update. Support for FSVybrid and
FSIMX6 added.

ZU

2015-05-18 1.11 M * Minor layout corrections HF

2015-08-05 1.12 A About Added new remark regarding name of application. HF

2015-10-06 1.13 M 2.3 Option to finish update successfully if up-to-date check is
true.

ZU

V Version

A,M,R Added, Modified, Removed

Au Author

About This Document

This document describes how to use the Kernel Update program, which is part of the
NetDCU-SKIT-USB-UpDate software package. A list of all platforms this utility is available
for can be found in chapter 1.2.

Remark

In the remaining document we’ll use the term “Windows CE” as generic reference to Win-
dows Embedded CE and Windows Embedded Compact.

Remark

The name of the application is KernelUpdate.exe (Windows Embedded CE 6.0 and Win-
dows Embedded Compact 7) or KernelUpdate2013.exe for Windows Embedded Compact
2013.
In the remaining document we’ll use the term “KernelUpdate” as generic reference for both
applications.

Remark

In the remaining document we’ll use the term “NetDCU” as generic reference to all our Win-
dows Embedded CE and Windows Embedded Compact boards. This should also include
armStone™, efus™, PicoCOM, PicoMOD and QBliss boards where appropriate.

Kernel UpDate Tool | 3 of 23

Table of Content

History 2

About This Document 2

Table of Content 3

1 Introduction 4

1.1 Update process ... 4

1.1.1 Kernel Update Checklist .. 4

1.2 Supported Platforms .. 5

2 The Kernel Update Program 7

2.1 XIP Kernel (experimental) .. 7

2.2 Compressed Kernel ... 8

2.3 Execution ... 9

3 Kernel Update library 11

3.1 Example .. 12

3.2 How to interagrate Kernel Update library into your application 14

3.3 API reference .. 15

3.3.1 InitKernelUpdate() ... 15

3.3.2 CheckNextRequirement() .. 16

3.3.3 StartKernelUpdate() ... 17

3.3.4 GetCurrentUpdateProgress() ... 18

3.3.5 GetUpdateResult() ... 19

3.3.6 DeinitKernelUpdate() ... 20

3.3.7 Return codes ... 21

4 Appendix 22

Important Notice .. 22

Listings 23

Figures 23

Tables 23

Kernel UpDate Tool | 4 of 23

1 Introduction

To update the currently used kernel on NetDCU, programs like USB-Loader or Eshell are
used, generally. This is a common method during development. On “finalized” systems this
often isn’t possible, as the needed interfaces are customized or not accessible anymore.

The main goal of this update program is to enable kernel updates, during the operating sys-
tem is running, very easily. In combination with the software update tool, this can even be
managed automatically.

1.1 Update process

First of all please keep in mind that updating the kernel always is a dangerous action and
could result in an unbootable system. It’s always advisable to test a kernel update with one
device, before updating a wide range of devices.

Kernel functionality grows during time. For this reason there are some (old) kernels that don’t
include the requirement for a proper working kernel update.

To keep the risk of damaging the board as small as possible, executing all needed tasks is
ordered in a specific way and KernelUpdate will try to intercept most possible situations.

This of course includes some basic verification. For example it will check if the current size
of kernel partition is big enough to hold the kernel or if the given binary file really contains the
expected kernel signature. Additionally the bin file will be written in a “testmode” and can be
aborted before performing real writes.

1.1.1 Kernel Update Checklist

To make sure that kernel updating can be executed properly there are some tips you should
take into account:

� Close user application(s) during kernel update. You might take advantage of the up-

date program from F&S to arrange this. Please refer to the “CheckAutoStart and

Update” documentation for details.

� Please do not start any programs during update process.

� KernelUpdate program and kernel image to be flashed may *not* be located on

NAND flash (FFSDISK).

� Verify the update process on a testing system before applying to a wide range of de-
vices. And make sure this test has been arranged under same conditions as in the
field.

� Do not remove external devices during update. Especially removing the device, the
kernel image is located on may definitely damage your system.

Kernel UpDate Tool | 5 of 23

1.2 Supported Platforms

Following table shows all platforms the program KernelUpdate.exe is available for.

Please notice that the KernelUpdate.exe program requires support for flash access within

the kernel. For that reason the kernel version this support has been added into kernel is also
listed below.

Platform Kernel version
requirements

NetDCU

NetDCU5.2 ---

NetDCU8 ---

NetDCU9 V1.15

NetDCU10 ---

NetDCU11 V1.15 (090528)

NetDCUA5

FSVybrid
V1.09

PicoMOD

PicoMOD1 ---

PicoMOD3 V0.09 (080718)

PicoMOD4 -

PicoMOD6 V1.09 (110914)

PicoMOD7A
FSS5PV210

V1.12 (121219)

PicoMODA9

FSIMX6
V1.00

PicoMOD1.2

FSVybrid
V1.00

PicoMODA5

FSVybrid
V1.00

PicoCOM

PicoCOM1 V1.11 (090617)

PicoCOM2 V1.04 (090623)

PicoCOM3 V1.09 (110914)

PicoCOM4 V1.09 (110914)

PicoCOMA5

FSVybrid
V1.09

Kernel UpDate Tool | 6 of 23

Platform Kernel version
requirements

QBliss

QBlissA8 V1.08 (110601)

QBlissA9

FSIMX6
V1.00

armStone

armStoneA5

FSVybrid
V1.09

armStoneA8
FSS5PV210

V1.12 (121219)

armStoneA9

FSIMX6
V1.00

nanoRISC

nanoRISCA8 V1.12 (121219)

efus

efusA9

FSIMX6
V1.0

Table 1: Supported platforms and their kernel version requirements.

Kernel UpDate Tool | 7 of 23

2 The Kernel Update Program

The KernelUpdate program includes a dialog that will display all steps and their results. If

this wouldn’t be desired there’s a “quiet mode” available, to disable this dialog.

Figure 1: Screenshot during kernel write

Optionally it’s possible to force KernelUpdate to log all performed actions and results to a

logfile:

Example:

Log file created by NetDCU KernelUpdate V1.0

Action: Find kernel bin file
Kernel: \ffsdisk\nk82_cf_060711.bin
Result: OK

Action: Checking Platform
Platform: NetDCU8
Result: OK

Action: Checking kernel signature
Result: OK

Action: Checking size of kernel partition
Result: OK

Action: Writing kernel in "Testmode"
Result: OK

Action: Writing kernel to flash
Result: OK

Result: Done

Update completed successfully

Listing 1: Log file example.

2.1 XIP Kernel (experimental)

On latest platforms (since PicoMOD6) we support a special kernel image variant, called XIP
(eXecute In Place) kernel. Instead of a “regular” kernel image, this image must not be held in
system memory completely. System components and modules will be loaded from NAND
flash just as they are needed. Using this variant features some fundamental advantages like
faster bootup times and less system memory usage. But related to runtime kernel image up-
dating it challenges much higher software requirement. It might be possible that the system
tries to load some data from kernel partition during or after updating process, which might

lead into system instability. Therefore XIP kernel image support is declared to be exper-

imental in current release.

Kernel UpDate Tool | 8 of 23

To avoid the risk of data loss, kernel update program will verify that all required modules are
loaded completely and dismount kernel partition. But because of this fact, operating system

may no longer function properly after kernel update has finished. Hence the system will

reboot automatically after kernel update has been finished successfully.

This should be catched up as a workaround solution to update XIP kernel images yet. F&S
already is working on a more flexible kernel update procedure.

2.2 Compressed Kernel

On NetDCU52 and NetDCU6 there’s an option to store the kernel compressed, which helps
to reduce flash memory consumption. This option can’t be changed with KernelUpdate.

If compression is enabled in bootloader, the structure of WindowsCE binary image format
(.bin) causes principle problems and can’t be used by KernelUpdate. The image there-

fore has to be available in raw format (.nb0). This can be achieved with the also attached

program cvrtbin, which is attached to this software package.

Following example shows how to convert an available bin file to the needed raw nb0 file.

Example:

C:\temp>cvrtbin NK52C1_070301.bin

ViewBin... NK52C1_070301.bin

Image Start = 0x80120000, length = 0x00BD4658

 Start address = 0x80121000

Checking record #93 for potential TOC (ROMOFFSET = 0x00000000)

Found pTOC = 0x80cf2d54

ROMOFFSET = 0x00000000

Done.

C:\temp>cvrtbin -r -a 0x80120000 -l 0x00BD4658 -w 32 NK52C1_070301.bin

ViewBin... NK52C1_070301.bin

Image Start = 0x80120000, length = 0x00BD4658

 Start address = 0x80121000

Checking record #93 for potential TOC (ROMOFFSET = 0x00000000)

Found pTOC = 0x80cf2d54

ROMOFFSET = 0x00000000

start 80120000 length 00000004

start 80120040 length 00000008

.

.

.

start 80cf2da8 length 000018b0

Progress...

0%Done.

Listing 2: Converting a bin file. Only required when updating compressed kernel images.

After executing the last command, a .nb0 file with the same name should be available

(NK52C1_070301.bin in this case).

Kernel UpDate Tool | 9 of 23

2.3 Execution

Syntax:

KernelUpdate -k <kernelfile> [-l <logfile>]

 [-q] [-s <start-address>]

 [-a <launch-address>]

 [-r [<timeout>]]

 [-f [<up to date action>]]

Parameters:

-k <kernelfile>

 Path to the kernel bin file to be written.

-l <logfile>

 Path of the logfile.

-q This option causes KernelUpdate to suppress displaying the dialog.

-r [<timeout>]

Reboot system automatically if kernel has been updated successfully. If an error has
occurred this option is discarded.
This option is used automatically if a XIP image is updated (see 2.1).

-f [<up to date action>]

 Without “-f” an update is abort if the kernel is already up to date

 Parameter values:

 0 (default) force update and skip up to date check.

 1 skip update and finish update successfully if kernel is up to date.

 Else ignored

-s <start-address>

Store the given start-address in bootloader. Only available when writing compressed
images.

-a <launch-address>

Store the given launch-address in bootloader. Only available when writing compressed
images.

-u

Skip unmounting BINFS which is default when updating XIP kernel images.

Return values:

0 Update finished successfully

1 Update aborted. The kernel has NOT been updated and NetDCU is in state as it was
before.

Kernel UpDate Tool | 10 of 23

2 Update failed. An error occurred during update that could have damaged NetDCU.
It’s not guaranteed that reboot will be able.

Kernel UpDate Tool | 11 of 23

3 Kernel Update library

The KernelUdpate library is designed to integrate the functionality of the common Ker-
nelUpdate program into your own application. Both possibilities are built from the same code
base and therefore should work nearly identical.

The process of updating a kernel image separates into four stages.

1. Initialization:
By initializing the kernel update library there will already evaluated some simple re-
quirements. Additionally the application gets detailed information about the next steps
to be performed during update.

2. Checking requirements:
Before writing the kernel into flash it is mandatory to check some requirements and
make sure that updating can be executed without any problems on the current sys-
tem.

3. Writing the Kernel into flash:
After all requirements are validated the kernel can be written to flash permanently. To
enhance safety, the KernelUpdate library also supports simulating the flash writes.

4. Query update result and deinitialize KernelUpdate library:
After the kernel has been flashed the application might want to get detailed infor-
mation about the updating result. Additionally the KernelUpdate library must be
deinitialized to free all temporarily allocated resources.

5. Reboot device:
When using KernelUpdate library the board will not be rebooted automatically. But
especially when updating a XIP kernel image it is highly recommended to reboot the
device quickly as the kernel partition is no longer valid or even available (compare
2.1).

Note:
The Kernel Update library is only available on request. It is not included in the CD you have
received with SKIT-UPDATE package. Please contact our support team to get more infor-
mation.

Kernel UpDate Tool | 12 of 23

3.1 Example

#include <windows.h>
#include "KernelUpdateLib.h"

/* … * /

TCHAR szKernelFile[MAX_PATH];
UINT uError = ERROR_SUCCESS;
KERNEL_UPDATE_PARMS cKernelUpdateParms;
DWORD dwNumReqs;
TCHAR szStatusText[MAX_STATUS_TEST];
CString strStatusMessage;
DWORD dwProgress;

// Get the location of the kernel bin file
m_objCEditKernelFile.GetWindowTextW(szKernelFile, MAX_PATH);

// Stage 1 - Initialize kernel update library
wcsncpy(cKernelUpdateParms.szKernelFile, szKernelFile, MAX_PATH);
cKernelUpdateParms.bVerbose = FALSE; // Disable verbosity
cKernelUpdateParms.bAutoCheck = TRUE; // Check all requirements
 //automatically.
cKernelUpdateParms.bForceUpdate = FALSE; // Force Update even
 // when the same kernel is
 // running already
uError = InitKernelUpdate(&cKernelUpdateParms, &dwNumReqs);

// Stage 2 - Verify update requirements
// NOTE: As we have enable auto-checking, this will already be performed
// by InitKernelUpdate()
#if 0
if (ERROR_SUCCESS == uError)
{
 DWORD dwCurStep = 1;
 do
 {
 GetRequirementDescription(szStatusText, MAX_STATUS_TEST,
 dwCurStep);
 uError = CheckNextRequirement(dwCurStep++);
 } while (ERROR_SUCCESS == uError);
 if ((ERROR_SUCCESS != uError) && (KU_ERROR_NOMORE_REQS != uError))
 {
 strStatusMessage.Format(L"%s - FAILED", szStatusText);
 MessageBox(strStatusMessage);
 return;
 }
}
else
#else
if (ERROR_SUCCESS != uError)
#endif
{
 strStatusMessage.Format(L"Failed to initialize KernelUpdate \
 library (error: %d)",
 uError);
 MessageBox(strStatusMessage);
 return;
}

// Stage 3- Start kernel update
// Simulate first
uError = StartKernelUpdate(TRUE);
if (ERROR_SUCCESS != uError)
{
 strStatusMessage.Format(L"Could not start Kernel update \
 (simluation mode)(error:%d)",
 uError);
 MessageBox(strStatusMessage);
 return;
}
else
{

Kernel UpDate Tool | 13 of 23

 m_objCProgressProgress.SetRange32(0, 100);
 while(GetCurrentUpdateProgress(&dwProgress))
 {
 // update progress bar
 m_objCProgressProgress.SetPos(dwProgress);
 }
}
// Query result
uError = GetUpdateResult();
if (ERROR_SUCCESS != uError)
 strStatusMessage.Format(L"Updating failed!! (error:%d)",
 uError);
m_objCProgressProgress.SetPos(0);

// Write kernel to flash pernanetly
uError = StartKernelUpdate(FALSE);
if (ERROR_SUCCESS != uError)
{
 strStatusMessage.Format(L"Could not start Kernel update\
 (error:%d)",
 uError);
 MessageBox(strStatusMessage);
 return;
}
else
{
 m_objCProgressProgress.SetRange32(0, 100);
 while(GetCurrentUpdateProgress(&dwProgress))
 {
 // update progress bar
 m_objCProgressProgress.SetPos(dwProgress);
 }
}

// Stage 4 - Query update result
uError = GetUpdateResult();
if (ERROR_SUCCESS != uError)
 strStatusMessage.Format(L"Updating failed!! (error:%d)",
 uError);
else
 strStatusMessage.Format(L"Kernel updated successfully!!");
MessageBox(strStatusMessage);

return;

Kernel UpDate Tool | 14 of 23

3.2 How to interagrate Kernel Update library into your application

The Kernel Update library is named KernelUpdateLibrary.lib . To integrate the library

into your application you simple have to include the header file (KernelUpdateLib.h) and

tell the linker where the implementation can be found.

Figure 2 shows a screenshot of the require configuration within your Visual Studio Project.

Figure 2: Visual Studio settings to integrate Kernel Update library.

Kernel UpDate Tool | 15 of 23

3.3 API reference

3.3.1 InitKernelUpdate()

Signature:

UINT InitKernelUpdate(PKERNEL_UPDATE_PARMS pParms,
 PDWORD dwNumReqs);

Parameters:

pParms Pointer to a KERNEL_UPDATE_PARMS structure, defining

some configuration values for Kernel Update.

dwNumReqs (optional) The number of available requirements to be

checked will be set in this variable.

KERNEL_UPDATE_PARMS structure:

bVerbose Enable / disable verbosity.

szKernelFile Location of the kernel file.

bAutoCheck Start requirement check automatically.

Return:

KU_ERROR_SUCCESS Success

Otherwise Error value (see 3.3.7)

Description:

This is the first function that must be called to initialize the Kernel Update library. Additionally
the application will receive information about the number of dependencies.

Kernel UpDate Tool | 16 of 23

3.3.2 CheckNextRequirement()

Signature:

UINT CheckNextRequirement(UINT uStep=1)

Parameters:

uStep (optional) Current dependency check that should be per-

formed.

Return:

KU_ERROR_NO_MORE_REQS All requirements have been checked.

KU_ERROR_SUCCESS As long as there are more steps to be performed the

function will return ERROR_SUCCESS.

Otherwise Error value (see 3.3.7)

Description:

After initializing the Kernel Update library some simple requirements have already been
checked. But to guarantee that updating the kernel can be performed successfully; there are
some more issues to be checked. The overall number of requirements for your platform are
already defined by InitializekernelUpdate().

Each time this function is being called, the next dependency will be checked automat-

ically. Therefore it is not required to defined the current step (uStep). If all requirements

have been verified the function returns KU_ERROR_NO_MORE_DEPS. The function will return

ERROR_SUCCESS as long as there are more steps to be performed. Each other return code

than ERROR_SUCCESS indicates an error. See 3.3.7 for details about the return error code.

Kernel UpDate Tool | 17 of 23

3.3.3 StartKernelUpdate()

Signature:

UINT StartKernelUpdate(BOOL bSimulate, DWORD dwDelayMs=0)

Parameters:

bSimulate If TRUE the kernel will be written in simulation-mode.

dwDelayMs (optional) You can define a delay to wait before start writ-

ing to flash.

Return:

KU_ERROR_SUCCESS Update thread started successfully.

Otherwise Error value (see 3.3.7)

Description:

Not before checking all requirements the kernel can be written to flash. Additionally this func-
tion features the possibility to enable a simulation-mode. This helps to extend safety of up-
dating process. The kernel file will be analysed in more detail, but no data will be written to
flash.

Kernel UpDate Tool | 18 of 23

3.3.4 GetCurrentUpdateProgress()

Signature:

BOOL GetCurrentUpdateProgress(PDWORD pdwCurProgress)

Parameters:

pdwCurProgress The current progress (in percent) will be set in this varia-

ble.
(0 ≤ (*pdwCurProgress) ≤ 100)

Return:

TRUE Writing still in progress.

FALSE Writing thread has finished. See GetUpdateResult() to

get information about success.

Description:

In most cases the application may display the current state of updating using a progress bar.
Therefore this function can be used after starting the update process (StartKer-

nelUpdat()). This function will be blocking as long as the internal write thread of kernel li-

brary notifies about an progress update. This function will return as long as there are more
portions to be written to flash. If the function returns TRUE this can either mean that updating

has finished or there occurred an error during writing. To get detailed result information
please call GetUpdateResult().

Kernel UpDate Tool | 19 of 23

3.3.5 GetUpdateResult()

Signature:

UINT GetUpdateResult(VOID)

Parameters:

- -

Return:

KU_ERROR_SUCCESS The Kernel has been written to flash successfully.

Otherwise Error during update. See 3.3.7 for detailed error infor-
mation.

Description:

As writing the kernel to flash will be performed in a custom thread, the overall result of updat-
ing must be queried using this function. If the kernel has been written successfully the return
value will be KU_ERROR_SUCCESS. A detailed list of all possible return values can be found at

the following table.

Kernel UpDate Tool | 20 of 23

3.3.6 DeinitKernelUpdate()

Signature:

UINT DeinitKernelUpdate(VOID)

Parameters:

- -

Return:

KU_ERROR_SUCCESS The Kernel Update library has been deinitialized correctly.

Otherwise See 3.3.7 for detailed error information.

Description:

After updating is finished all internal allocated resources must be freed again. To do so this
function be called. Please note calling this function while updating is in process will abort all
current routines and might lead into a damaged system.

Kernel UpDate Tool | 21 of 23

3.3.7 Return codes

Return code Description

KU_ERROR_SUCCESS

ERROR_SUCCESS
Operation has been executed with no error.

KU_ERROR_FILENAME Illegal file name.

KU_ERROR_PROGRAMM Non-zero return value. Call GetLastError() to get

information about the system error.

KU_ERROR_READ Read-error

KU_ERROR_KERNEL_NOT_FOUND Kernel file not found.

KU_ERROR_KERNEL_LOC_NOT_FOUND Location of kernel file not found.

KU_ERROR_INVALID_KERNSIG Invalid Kernel signature. The given file is not kernel
image.

KU_ERROR_PLATFORM Platform not supported.

KU_ERROR_WRITE Write fault

KU_ERROR_CHECKSUM Checksum Error. The kernel bin file seems to be
corrupted.

KU_ERROR_WRITEPSD Writing bootloader configuration failed.

KU_ERROR_OUTOFMEM Of of memory.

KU_ERROR_KERNPART Kernel partition to small.

KU_ERROR_READPSD Reading bootloader configuration failed.

KU_ERROR_ABORTED Update has been aborted.

KU_ERROR_NOT_READY Update process not ready. This value will be re-
turned if a functions is called before the internal
state machine is ready for this action.

KU_ERROR_NOMORE_REQS No more requirement validations available.

KU_ERROR_COMPRESSION_ENABLED - obsolete - Compression activated in bootloder.
The kernel can not be updated.

KU_ERROR_NO_COMPRESSION - obsolete - Compression not activated

KU_ERROR_KERNSTART - obsolete - Missing kernel start address

KU_ERROR_LAUNCHADDR - obsolete - Missing kernel launch address

Kernel UpDate Tool | 22 of 23

4 Appendix

Important Notice

The information in this publication has been carefully checked and is believed to be
entirely accurate at the time of publication. F&S Elektronik Systeme assumes no re-
sponsibility, however, for possible errors or omissions, or for any consequences re-
sulting from the use of the information contained in this documentation.

F&S Elektronik Systeme reserves the right to make changes in its products or prod-
uct specifications or product documentation with the intent to improve function or de-
sign at any time and without notice and is not required to update this documentation
to reflect such changes.

F&S Elektronik Systeme makes no warranty or guarantee regarding the suitability of
its products for any particular purpose, nor does F&S Elektronik Systeme assume
any liability arising out of the documentation or use of any product and specifically
disclaims any and all liability, including without limitation any consequential or inci-
dental damages.

Products are not designed, intended, or authorised for use as components in systems in-
tended for applications intended to support or sustain life, or for any other application in
which the failure of the product from F&S Elektronik Systeme could create a situation where
personal injury or death may occur. Should the Buyer purchase or use a F&S Elektronik Sys-
teme product for any such unintended or unauthorised application, the Buyer shall indemnify
and hold F&S Elektronik Systeme and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, expenses, and reasonable attorney
fees arising out of, either directly or indirectly, any claim of personal injury or death that may
be associated with such unintended or unauthorised use, even if such claim alleges that F&S
Elektronik Systeme was negligent regarding the design or manufacture of said product.

Kernel UpDate Tool | 23 of 23

Listings

Listing 1: Log file example. ... 7

Listing 2: Converting a bin file. Only required when updating compressed kernel images. ... 8

Figures

Figure 1: Screenshot during kernel write ... 7

Figure 2: Visual Studio settings to integrate Kernel Update library.14

Tables

Table 1: Supported platforms and their kernel version requirements. 6

